Islanding Design and Cost Analysis for Donald and Tarnagulla Microgrid Feasibility Study

Presenter: Dr. Rakibuzzaman Shah and Dr. Kazi Hasan

Research Team: Professor Syed Islam, A/Professor Jiefeng Hu, Dr. Minh Dao, Mr. Umer Akram, Mr. Mushfik Mir

Contents of the Presentation

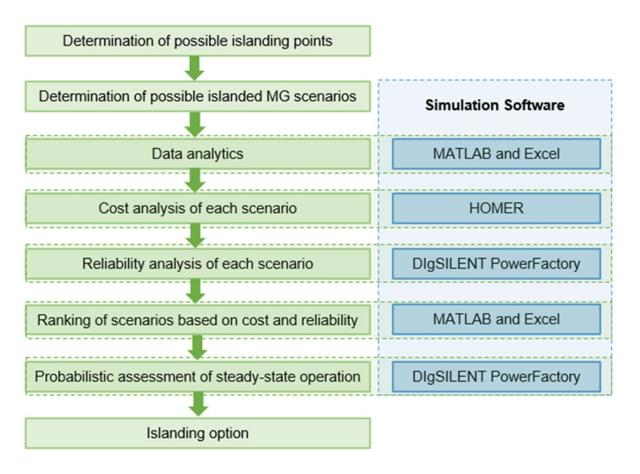
- Project Overview
- Modelling Approach for Islanding Design
- Economic/Cost Analysis
- 3 🖫 System Reliability Analysis
- 4 ☑ Combined Cost and Reliability Analysis
 - Conclusions

Project Overview

Task 1: Developing D&T Microgrid Model

- A. Microgrid power system and power electronics modelling
- B. Microgrid economic modelling

Task 2: Assessing Islanding Design (Options)


- A. Identifying the potential islanding options and requirements
- B. Assessing islanding impacts

Task 3: Performing Cost Estimation and Reliability Analysis

- A. Cost estimation for all shortlisted islanded options
- B. Microgrid reliability analysis

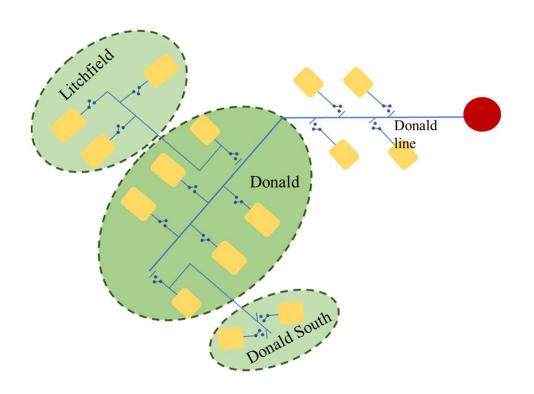
Research Methodology

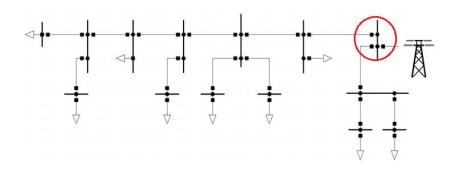
This research has taken a progressive approach to identify the optimal islanding design options.

The optimal islanding options has been chosen based on the

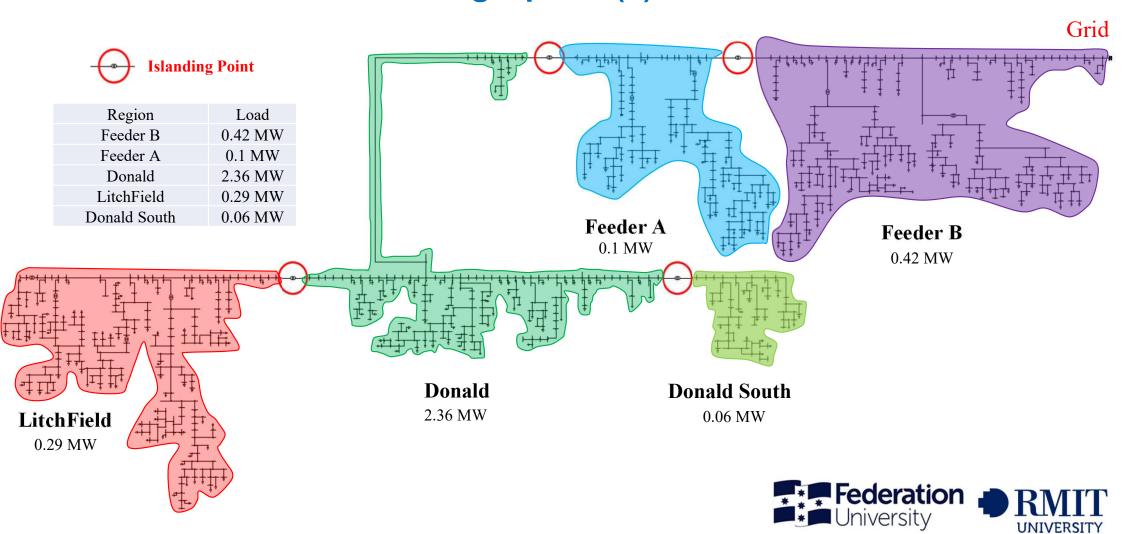
- (1) cost analysis only,
- (2) reliability analysis only, and
- (3) combined reliability and cost analysis.

Figure: Research methodology to identify optimal islanding option(s).

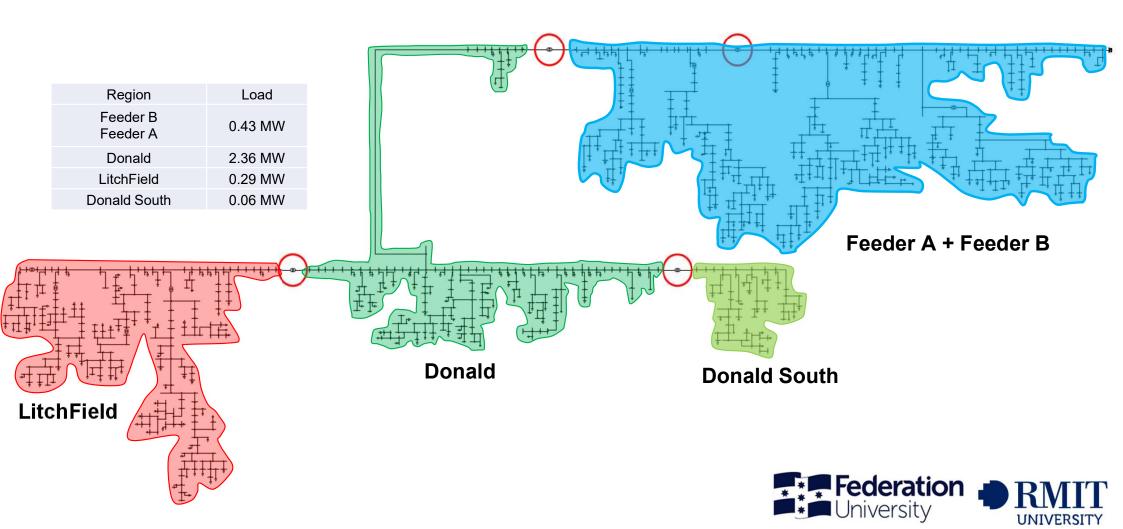

System Modelling for Islanding Design

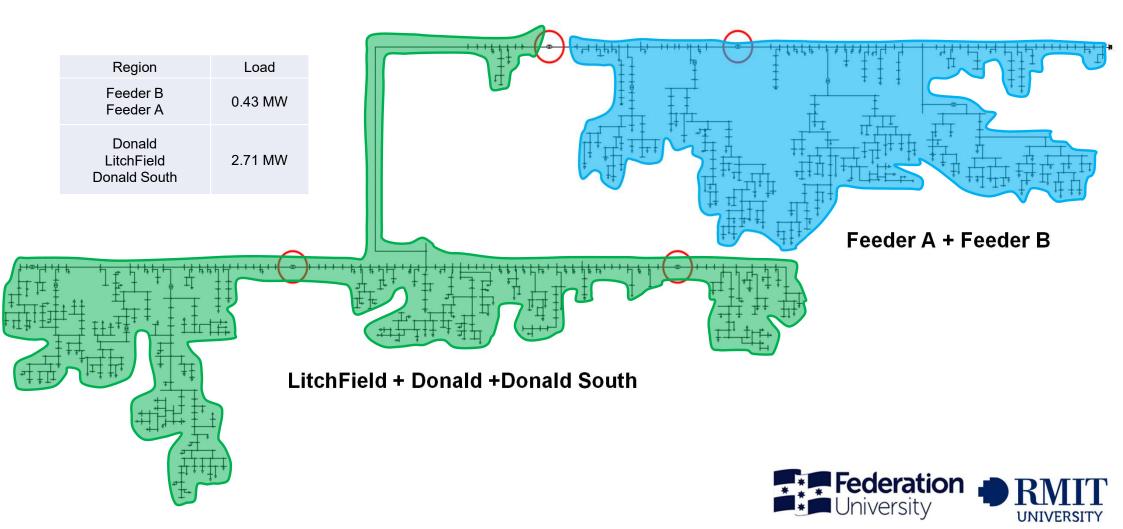


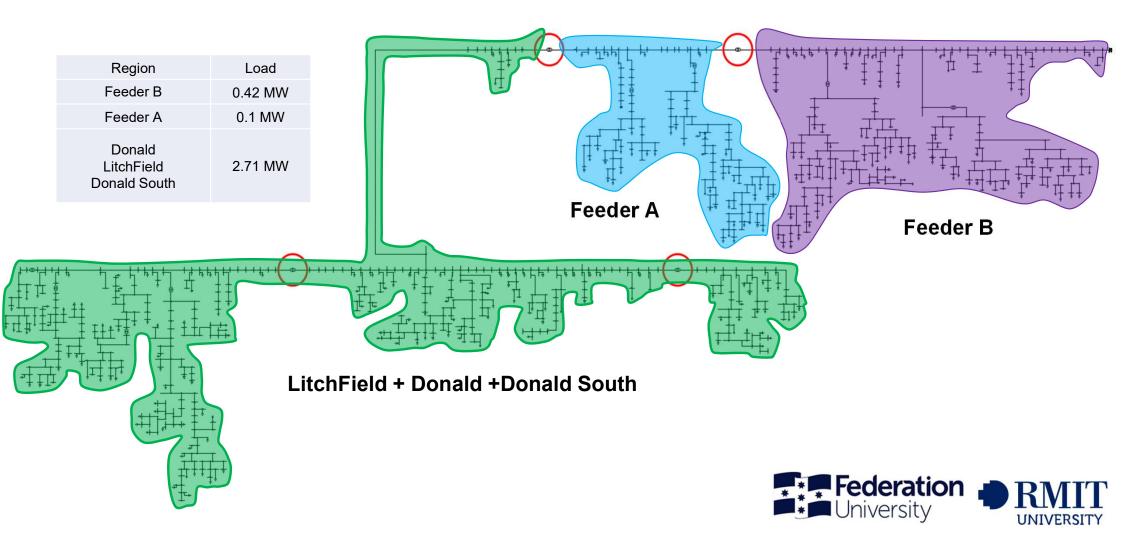
Donald and Tarnagulla Networks



Tarnagulla Network


Donald Network


Possible Islanding Option (1): Donald Network


Possible Islanding Option (2): Donald Network

Possible Islanding Option (3): Donald Network

Possible Islanding Option (4): Donald Network

K. Sid

All Possible Islanding Scenarios: Donald Network

Scenario	Grid	Feeder B	Feeder A	Donald	Donald South	Litchfield
S1	0	0	0	0	0	0
S2	0	0	0	1	1	0
S3	0	0	0	1	0	1
S4	0	0	0	1	1	1
S5	0	1	1	0	0	0
S6	0	2	2	1	1	0
S7	0	2	2	1	0	1
S8	0	2	2	1	1	1
S9	0	0	1	1	0	0
S10	0	0	1	1	1	0
S11	0	0	1	1	0	1
S12	0	0	1	1	1	1
S13	0	1	1	1	0	0
S14	0	1	1	1	1	0
S15	0	1	1	1	0	1
S16	0	1	1	1	1	1

Number & Colour	Description			
0	Individual feeder islanded			
1	Area islanded scenarios			
2	Different area islanded scenarios			

- 16 possible islanded scenarios have been considered for cost estimation and reliability analysis.
- Scenarios represent single islands and/or clusters of islands.
- All of these islands are designed to (electrically) operate independently.

connected

All Possible Islanding Scenarios: Donald Network

Scenario	Grid	Feeder	Feeder	Donald	Donald	Litchfield
S17	1	1	0	0	0	0
S18	1	1	0	2	2	0
S19	1	1	0	2	0	2
S20	1	1	0	2	2	2
S21	1	1	2	2	0	0
S22	1	1	2	2	2	0
S23	1	1	2	2	0	2
S24	1	1	2	2	2	2
S25	1	1	1	0	0	0
S26	1	1	1	2		2
S27	1	1	1	2	2	0
S28	1	1	1	2	2	2
S29	1	1	1	1	0	0
S30	1	1	1	1	0	1
S31	1	1	1	1	1	0
\$3 2	1	1	1	1	1	1

Number & Colour	Description			
0	Individual feeder islanded			
1	Area islanded scenarios			
2	Different area islanded scenarios			

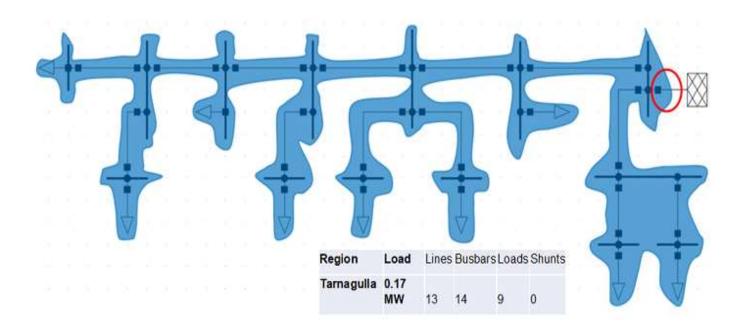
- 16 possible (partially gridconnected) islanded scenarios have been considered for cost estimation and reliability analysis.
- Scenarios represent single islands and/or clusters of islands.
- All of these islands are designed to (electrically) operate independently.

All Possible Islanding Scenarios: Donald Network

Totally off-grid Islanded Scenarios

Scenario	Grid	Feeder B	Feeder A	Donald	Donald South	Litchfield
S1	0	0	0	0	0	0
S2	0	0	0	1	1	0
S3	0	0	0	1	0	1
S4	0	0	0	1	1	1
S5	0	1	1	0	0	0
S6	0	2	2	1	1	0
S7	0	2	2	1	0	1
S8	0	2	2	1	1	1
S9	0	0	1	1	0	0
S10	0	0	1	1	1	0
S11	0	0	1	1	0	1
S12	0	0	1	1	1	1
S13	0	1	1	1	0	0
S14	0	1	1	1	1	0
S15	0	1	1	1	0	1
S16	0	1	1	1	1	1

Number & Colour	Description
0	Individual feeder islanded
1	Area islanded scenarios
2	Different area islanded scenarios


Partially Grid-connected Scenarios

Scenario	Grid	Feeder	Feeder	Donald	Donald	Litchfield
S17	1	1	0	0	0	0
S18	1	1	0	2	2	0
S19	1	1	0	2	0	2
S20	1	1	0	2	2	2
S21	1	1	2	2	0	0
S22	1	1	2	2	2	0
S23	1	1	2	2	0	2
S24	1	1	2	2	2	2
S25	1	1	1	0	0	0
S26	1	1	1	2		2
S27	1	1	1	2	2	0
S28	1	1	1	2	2	2
S29	1	1	1	1	0	0
S30	1	1	1	1	0	1
S31	1	1	1	1	1	0
S32	1	1	1	1	1	1

Number & Colour	Description			
0	Individual feeder islanded			
1	Area islanded scenarios			
2	Different area islanded scenarios			

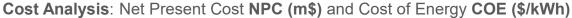
- Total 32
 scenarios
 represent single
 islands and/or
 clusters of
 islands.
- 32 islanded scenarios have been considered for cost estimation and reliability analysis.
- All of these islands are designed to (electrically) operate independently.

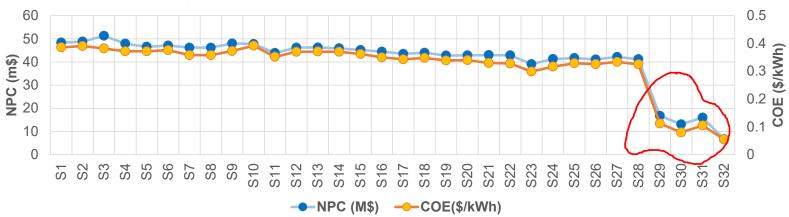
Possible Islanding Option: Tarnagulla Network

• Being a smaller network, Tarnagulla network is either would be gridconnected or islanded. No cluster of islands is possible.

Economic Analysis for Islanding Options

Optimization in Homer Software


- Local generation and load data has been modelled for Homer input.
- All cost information have been provided based on the available (literature) information.
- The load following dispatch has been considered in Homer optimization.
- Australian NEM price has been considered for the grid-electricity scenarios.


Techno-Economic Analysis: Donald Network

	Sce	enario S1			
Network Name	Feeder B	Feeder A	Donald	Donald South	Litchfield
Network Topology	0	0	0	0	0
Load (MW)	0.42	0.1	2.36	0.06	0.29
174. 141	Require	d Generation			
Solar PV (kW)	229	67.8	1190	40.7	172
DG (kW)	475	110	1900	70	335
Battery Storage (kWh)	13	7	43	5	13
Converter (kW)	29.4	15.8	98.2	10.7	30.4
	Netv	vork Costs			A
NPC (m\$)	6.56	1.80	34.35	1.08	4.62
COE (\$/kWh)	0.404	0.456	0.375	0.463	0.412
Operating Cost (M\$)	362,807	98,306	1.90	58.347	252,610
	To	tal Costs	1.3.		
NPC (m\$)				48.41	
COE (\$/kWh)		0.386			
Operating Cost (M\$/yr)				4.081	

- Economic analysis for each scenario has been performed separately.
- All 32 scenarios will be compared with their Net Present Cost, NPC (m\$) and Cost of Energy, COE (\$/kWh).

Cost Analysis: Donald Network

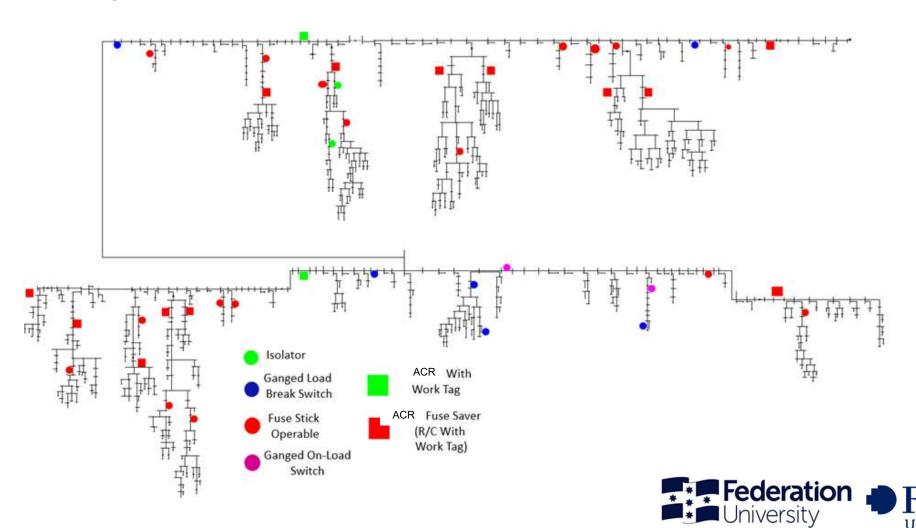
- Cost of energy (**COE**) in the islanded option(s) could be 2 to 7 times expensive then the grid connected option(s).
- Better to have large areas connected together in a microgrid, rather than having individual smaller ones.
- Economically, S32 is the best option (e.g., grid-connected option).
- System reliability analysis will be presented in the next Section.

Cost Analysis: Tarnagulla

Tarnagulla Islanded						
Load (MW)	0.17					
Required (Generation					
Solar PV (kW)	134					
DG (kW)	170					
Battery (kWh)	12					
Converter (kW)	9.7					
Total	Costs					
NPC (m\$)	3.50					
COE (\$/kWh)	0.420					
Operating Cost (m\$/yr)	0.194					

Tarnagulla Grid-	Tarnagulla Grid-Connected						
Load (MW)	0.17						
Required Ger	neration						
Solar PV (kW)	201						
DG (kW)	70						
Battery (kWh)	0						
Converter (kW)	0						
Total Co	osts						
NPC (m\$)	0.856						
COE (\$/kWh)	0.077						
Operating Cost (m\$/yr)	0.260						

- Based on the economic consideration, it is better to keep the Tarnagulla network grid-connected.
- Energy cost would be 4 times more in the islanded scenario.
- Reliability considerations will be presented in the next Section.



Reliability Assessment for Islanding Options

Reliability Model with Protection Equipment: Donald Network

UNIVERSITY

Reliability Analysis Approach: Donald Network

Input Reliability data						
CB at 22 kV feeder	Time to actuate switch	30 min				
	CB fails to open	5%				
CB at secondary side of transformer	Time to actuate switch	1 min				
	Forced Outage rate	0.0104 1/a				
Terminal 22 kV	Forced Outage Expectancy	0.208 h/a				
	Forced Outage Duration	20 h				
	Failure frequency	1.99094				
Terminal 0.4 kV	Repair duration	1.914055				
22 kV overhead lines	Failure frequency	0.177 1/(_a*km)				
	Repair duration	10 h				
	Transient fault frequency	12.5053				
Solar DV	Failure rate	0.2487				
Solar-PV	Repair duration	40 h				
Pottow.	Failure rate	0.2487				
Battery	Repair duration	40 h				

Major reliability input data

- Outage Duration: Number of hours
- Outage Rate: Outage per year

Limitations of the reliability data

- Network specific data is proprietary
- Data has been obtained from the literature
- Literature data has been multiplied with the real network characteristics

Reliability Indices Considered in this Study

Energy Not Served (ENS)

This index is measured in MWh/a and informs about the total amount of energy not supplied to system loads due to outages.

System Average Interruption Duration Index (SAIDI)

This index indicates the total duration of interruption for the average customer during a predefined period of time. It is commonly measured in customer minutes or customer hours of interruption. Mathematically, this is given below.

$$SAIDI = \frac{\sum Customer\ Interruption\ Durations}{Total\ Number\ of\ Customers\ Served}$$

Customer Average Interruption Duration Index (CAIDI)

CAIDI represents the average time required to restore service. Mathematically, this is given below.

$$CAIDI = \frac{\sum Customer\ Interruption\ Durations}{Total\ Number\ of\ Customers\ Interrupted} = \frac{SAIDI}{SAIFI}$$

Reliability Indices Considered in this Study

System Average Interruption Frequency Index (SAIFI)

This index indicates the total duration of interruption for the average customer during a predefined period of time. It is commonly measured in customer minutes or customer hours of interruption. Mathematically, this equation is given below.

$$SAIFI = rac{\sum Number\ of\ Customers\ Interrupted}{Total\ Number\ of\ Customers\ Served}$$

Customer Average Interruption Frequency Index (CAIFI)

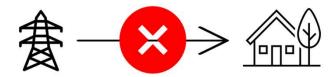
This index gives the average frequency of sustained interruptions for those customers experiencing sustained interruptions. The customer is counted once regardless of the number of times interrupted for this calculation. Mathematically, this is given below.

$$CAIFI = \frac{\sum Total\ Number\ of\ Interruptions\ Occured}{Total\ Number\ of\ Customers\ Affected}$$

Reliability Indices: Donald Network

Islanded Scenarios

Islanded Scenarios (1X)


Lower

values

show higher

reliability

cenarios	Islanded Reliability Indices					
	SAIFI	CAIFI	SAIDI	ENS		
S1	29.874	30.845	115.919	358.226		
S2	30.951	31.079	120.145	367.129		
S3	33.357	34.441	116.211	357.193		
S4	34.436	34.579	120.436	366.092		
S5	31.459	32.482	116.712	359.607		
S6	32.536	32.671	120.937	368.51		
S7	34.941	36.077	117.003	358.574		
S8	36.021	36.17	121.229	367.474		
S9	31.231	32.246	116.598	359.409		
S10	32.309	32.443	120.824	368.312		
S11	34.713	35.842	116.889	358.376		
S12	35.793	35.942	121.115	367.276		
S13	68.754	70.989	135.359	424.486		
S14	71.385	71.682	140.362	435.006		
S15	78.923	81.489	138.994	431.433		
S16	81.556	81.896	143.996	441.95		
			,			

ENS 358 MWh per year means 5 days of load shading per year.

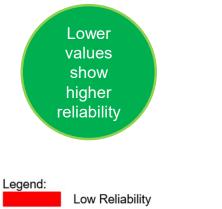
ENS (Energy Not Served) is a good measure of reliability. ENS is **358 MWh** per year means that 358 MWh energy will not be served to the system (customers) in a year.

For example, if Donald area has 1000 customer, each of them will have 358 kWh energy deficit (in a year).

358 kWh is equivalent to 5 days of energy for a 3-kW residential customer load serving for 24 hours each day.

Reliability Indices: Donald Network

Islanded Scenarios


Islanded Scenarios (1X)

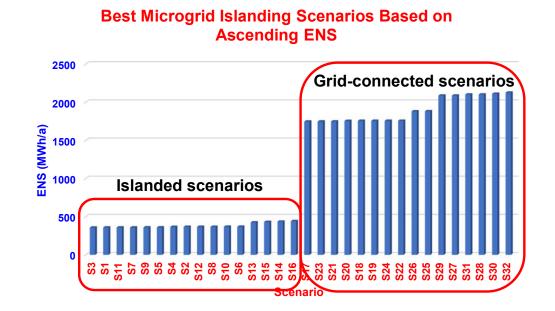
Scenarios	Islanded Reliability Indices						
	SAIFI	CAIFI	SAIDI	ENS			
S1	29.874	30.845	115.919	358.226			
S2	30.951	31.079	120.145	367.129			
S3	33.357	34.441	116.211	357.193			
S4	34.436	34.579	120.436	366.092			
S 5	31.459	32.482	116.712	359.607			
S6	32.536	32.671	120.937	368.51			
S7	34.941	36.077	117.003	358.574			
S8	36.021	36.17	121.229	367.474			
S9	31.231	32.246	116.598	359.409			
S10	32.309	32.443	120.824	368.312			
S11	34.713	35.842	116.889	358.376			
S12	35.793	35.942	121.115	367.276			
S13	68.754	70.989	135.359	424.486			
S14	71.385	71.682	140.362	435.006			
S15	78.923	81.489	138.994	431.433			
S16	81.556	81.896	143.996	441.95			

Grid Connected Scenarios

Grid Connected Scenarios (1X)

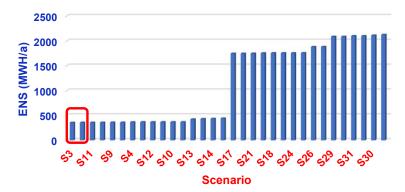
Scenarios	Islar	nded Relia	bility Indice	es
	SAIFI	CAIFI	SAIDI	ENS
S17	30.298	31.283	117.614	362.75
S18	31.374	31.505	121.84	371.653
S19	33.78	34.878	117.906	361.717
S20	34.859	35.004	122.331	370.617
S21	31.655	32.684	118.293	363.933
S22	32.733	32.868	122.589	372.836
S23	35.137	36.279	118.584	362.9
S24	36.217	36.368	122.81	371.8
S25	32.024	33.065	118.486	364.271
S26	35.506	36.661	118.778	363.238
S27	33.101	33.239	122.712	373.174
S28	36.586	36.738	123.003	372.138
S29	71.248	73.564	138.098	432.494
S30	81.763	84.421	141.906	439.86
S31	73.959	74.267	143.141	443.096
S32	84.476	84.848	146.948	450.461

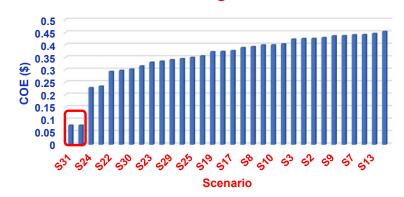
Sensitivity Analysis with 1X, 2X, 5X, and 10X of Reliability Parameters


- Remote feeder failure rate is higher due to the vegetation, animal/bird interruption etc.
- Repair time if higher to identify the location of the fault and to restore the system.
- Reliability input parameters can model these (failure rate and repair time) parameters.

Grid	Grid Connected Scenarios (1X) Grid Connected Scenarios (2X)		Gı	rid Connected Scenarios (5X)	Grid Connected Scenarios (10X)				
Case	Islanded Reliability Indices	Case	Islanded Reliability Indices	Case	Islanded Reliability Indices	Case	Islan	ded Relia	oility Indices
	SAIFI CAIFI SAIDI ENS		SAIFI CAIFI SAIDI ENS		SAIFI CAIFI SAIDI ENS		SAIFI	CAIFI	SAIDI ENS
S17	30.298 31.283 117.614 362.x	S17	31.656 32.684 133.36 <mark>\$ 404.</mark> x	S17	35.728 36.889 243.45 5 698.x	S17	42.516	43.898	636.355 1746. x
S18	31.374 31.505 121.84 371.653	S18	32.733 32.869 137.594 413.691	S18	36.805 36.958 247.681 707.454	S18	43.593	43.774	640.581 1755.895
S19	33.78 34.878 117.906 361.717	S19	35.138 36.28 133.66 403.755	S19	39.21 40.485 243.747 697.519	S19	43.593	43.774	640.581 1755.895
S20	34.859 35.004 122.331 370.617	S20	36.217 36.367 137.885 412.654	S20	40.289 40.457 247.972 706.418	S20	47.077	47.274	640.872 1754.858
S21	31.655 32.684 118.293 363.933	S21	33.012 34.085 134.046 405.971	S21	37.085 38.291 244.133 699.734	S21	43.873	45.299	637.034 1748.175
S22	32.733 32.868 122.589 372.836	S22	34.09 34.232 138.272 414.874	S22	38.163 38.322 248.36 708.638	S22	44.951	45.138	641.26 1757.078
S23	35.137 36.279 118.584 362.9	S23	36.495 37.681 134.338 404.938	S23	40.567 41.886 244.425 698.701	S23	47.355	48.895	637.325 1747.141
S24	36.217 36.368 122.81 371.8	S24	37.574 37.731 138.564 413.838	S24	41.647 41.821 248.651 707.602	S24	48.435	48.637	641.551 1756.042
S25	32.024 33.065 118.486 364.271	S25	34.022 35.128 136.734 410.658	S25	40.013 41.314 <mark>263.189 732.862</mark>	S25	50.004	51.629	713.734 1881.911
S26	35.506 36.661 118.778 363.238	S26	37.504 38.723 137.025 409.625	S26	43.4951 44.909 <mark>263.481</mark> 731.829	S26	53.487	55.225	714.025 1880.878
S27	33.101 33.239 122.712 373.174	S27	35.099 35.244 140.959 419.56	S27	41.089 41.261 267.415 741.765	S27	167.911	173.369	772.687 2087.025
S28	36.586 36.738 123.003 372.138	S28	38.584 38.744 141.25 418.524	S28	44.574 44.759 267.706 740.729	S28	173.901	174.625	779.369 2101.038
S29	71.248 73.564 138.098 432.494	S29	81.989 84.654 160.717 494.089	S29	14.209 117.922 300.41 862.236	S29	167.911	173.369	772.687 2087.021
S30	81.763 84.421 141.906 439.86	S30	94.071 97.129 165.309 503.324	S30	130.994 135.252 307.353 877.073	S30	192.534	198.792	783.549 2111.17
S31	73.959 74.267 143.141 443.096	S31	85.064 85.418 165.942 505.07	S31	118.378 118.871 306.182 874.354	S31	173.901	174.625	779.369 2101.034
S32	84.476 84.848 146.948 450.461	S32	97.149 97.553 170.533 514.305	S32	135.165 135.727 313.124 889.191	S32	198.526	199.352	790.23 2125.184

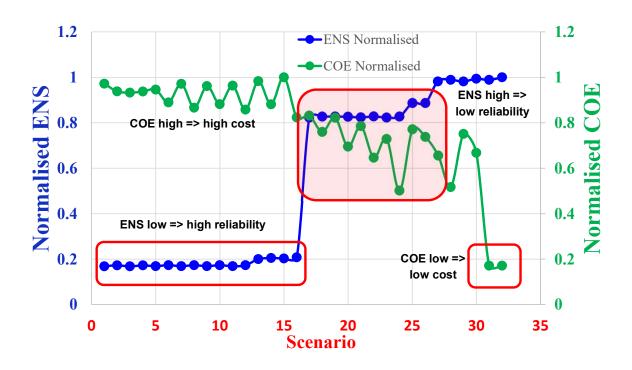
Priority Ranking as per Reliability (ENS)


<u>.</u>		_	1		т_		_		
Scenario		Fee			+		Do		Litchfield
S1	0		0	(-	0			
52	_		٥			1		1	
S3	0		0	(1		C	
S4	0		0	(_	1		1	
S5	0		1			0			0
S6	0		2	2	2	1		1	. 0
S7	0		2		2	1			1
S8	0		2		2	1		1	. 1
S9	0		0			1		C	0
S10	0		0			1		1	. 0
S11	0		0			1		C	1
S12	0		0			1		1	. 1
S13	0		1	1		1		C	0
S14	0		1	1		1		1	. 0
S15	0		1	1		1		C	1
S16	0		1	1		1		1	. 1
Scenario	Grid		Feede	r Feed	er	Dona	ıld	Donald	Litchfield
S17		1		1	0		0	0	0
S18		1		1	0		2	2	0
S19		1		1	0		2	0	2
S20		1							
S21				1	0		2	2	2
		1		1	2		2	2	2
S22		1			_		-		
S22 S23		_		1	2		2	0	0
_		1		1	2		2	0	0
S23		1		1 1 1	2 2		2 2	0 2 0	0 0 2
S23 S24		1 1 1		1 1 1	2 2 2		2 2 2	0 2 0 2	0 0 2 2
S23 S24 S25		1 1 1		1 1 1 1	2 2 2 2		2 2 2 2	0 2 0 2	0 0 2 2 0
S23 S24 S25 S26		1 1 1 1		1 1 1 1 1	2 2 2 2 1 1		2 2 2 2 0 2	0 2 0 2 0	0 0 2 2 0 2
S23 S24 S25 S26 S27		1 1 1 1 1		1 1 1 1 1 1	2 2 2 1 1		2 2 2 2 0 2 2	0 2 0 2 0	0 0 2 2 0 2
S23 S24 S25 S26 S27 S28		1 1 1 1 1 1		1 1 1 1 1 1 1	2 2 2 1 1 1		2 2 2 0 2 2 2	0 2 0 2 0	0 0 2 2 0 2 0
\$23 \$24 \$25 \$26 \$27 \$28 \$29		1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1	2 2 2 1 1 1 1		2 2 2 0 2 2 2 1	0 2 0 2 0 2 2 2	0 0 2 2 0 2 0 2

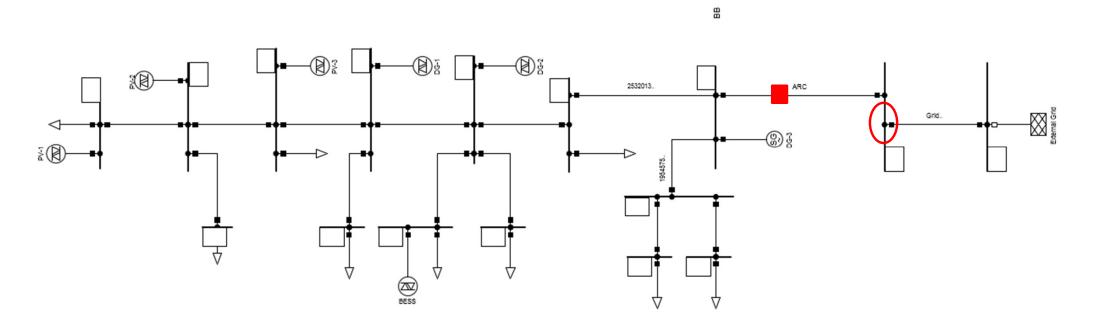

Priority Ranking as per Reliability (ENS) and Cost (COE)

Scenarios	ENS	Scenarios	COE
S3	357.193	S31	0.0774
S1	358.226	S32	0.0774
S11	358.376	S24	0.2278
S7	358.574	S28	0.234
S9	359.409	S22	0.293
S5	359.607	S27	0.297
S4	366.092	S30	0.3023
S2	367.129	S20	0.3149
S12	367.276	S23	0.33
S8	367.474	S26	0.334
S10	368.312	S29	0.34
S6	368.51	S18	0.344
S13	424.486	S25	0.349
S15	431.433	S21	0.3554
S14	435.006	S19	0.372
S16	441.95	S16	0.373
S17	1746.992	S17	0.3763
S23	1747.141	S12	0.3885
S21	1748.175	S8	0.3925
S20	1754.858	S14	0.399
S18	1755.895	S10	0.3993
S19	1755.895	S6	0.403
S24	1756.042	S3	0.4225
S22	1757.078	S4	0.4246
S26	1880.878	S2	0.425
S25	1881.911	S5	0.4285
S29	2087.021	S9	0.4355
S27	2087.025	S11	0.4363
S31	2101.034	S7	0.44
S28	2101.038	S1	0.4404
S30	2111.17	S13	0.4453
S32	2125.184	S15	0.453

Best Islanding Scenarios Based on Ascending ENS


Best Islanding Scenarios Based on Ascending COE

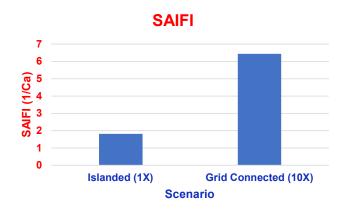
Scenario	Grid	Feeder B	Feeder A	Donald	Donald South	Litchfield
S1	0	0	0	0	0	0
S2	0	0	0	1	1	0
S3	0	0	0	1	0	1
S4	0	0	0	1	1	1
S5	0	1	1	0	0	0
S6	0	2	2	1	1	0
S7	0	2	2	1	0	1
S8	0	2	2	1	1	1
S9	0	0	1	1	0	0
S10	0	0	1	1	1	0
S11	0	0	1	1	0	1
S12	0	0	1	1	1	1
S13	0	1	1	1	0	0
S14	0	1	1	1	1	0
S15	0	1	1	1	0	1
S16	0	1	1	1	1	1

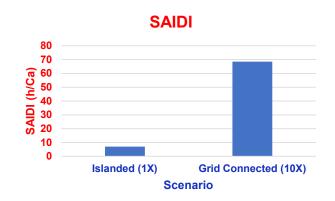

Scenario	Grid	Feeder	Feeder	Donald	Donald	Litchfield
S17	1	1	0	0	0	C
S18	1	1	0	2	2	C
S19	1	1	0	2	0	2
S20	1	1	0	2	2	2
S21	1	1	2	2	0	C
S22	1	1	2	2	2	C
S23	1	1	2	2	0	2
S24	1	1	2	2	2	2
S25	1	1	1	0	0	C
S26	1	1	1	2		2
S27	1	1	1	2	2	C
S28	1	1	1	2	2	2
S29	1	1	1	1	0	C
S30	1	1	1	1	0	1
S31	1	1	1	1	1	C
S32	1	1	1	1	1	1

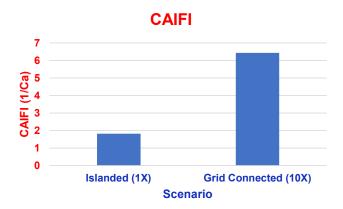
Priority Ranking as per Reliability (ENS) and Cost (COE)

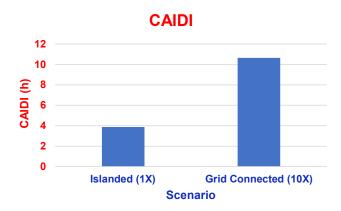
- Cost analysis identified the $\frac{1}{2}$ to $\frac{1}{7}$ th cheaper electricity for S32, in the grid connected mode.
- Based on reliability, S3 scenario is the best islanding candidate in the Donald area.
- Reliability analysis identified 5.6 days of energy outage (for each customer) in the grid connected mode.
- A combined cost and reliability ranking would offer the options to prioritize.

Reliability Model with Protection Equipment: Tarnagulla Network


ACR with Work Tag




Location of Islanding



Reliability Indices: Tarnagulla Network

- SAIFI: system interruptions per year is 3.5 times worse in grid connected scenario.
- SAIDI: system interruption duration per year is 9.7 times worse in grid connected scenario.
- CAIFI: customer interruptions per year is 3.5 times worse in grid connected scenario.
- CAIDI: customer interruption duration per year is 3 times worse in grid connected scenario.

Reliability Indices: Tarnagulla Network

Supply feeder		SAIFI	CAIFI	SAIDI	CAIDI	ENS	ENS Explained	
	1X	3.875	3.874	10.995	2.838	1.911	0.66 days of power outage	
Low reliability	2X	4.16	4.16	12.739	3.063	2.212	0.76 days of power outage	
Very low reliability	5X	5.015	5.015	24.949	4.975	4.314	1.49 days of power outage	
Worst reliability	10X	6.439	6.439	68.554	10.645	11.821	4.10 days of power outage	

- Cost analysis identified the 1/4th cheaper electricity the grid connected mode.
- Reliability analysis identified 4.1 days of power outage (for each customer) in the grid connected mode.
- A combined cost and reliability ranking would offer the options to prioritize.

4

Combined Cost and Reliability Analysis for Islanding Options

Combined Cost and Reliability Analysis

Converting reliability into \$

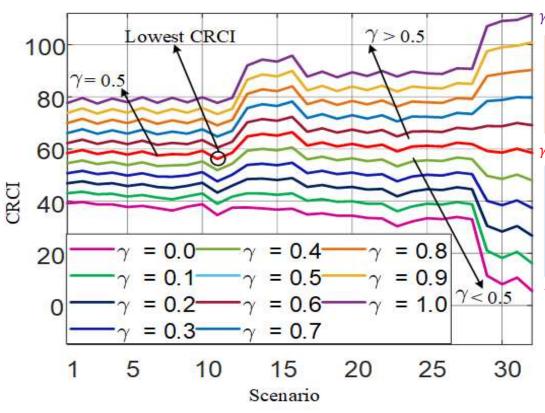
VCR (Value of Customer Reliability) has been considered as 16.96 \$/kWh for regional Victorian (TAS, NSW) residential customers as prescribed by Australian Energy Regulator (AER).

2019 VCR values

Residential customer VCRs by climate zone and remoteness - in \$/kWh

Residential customer segment	Applicable State or Territory	Residential VCR (\$/kwh) \$2019
Climate Zone 1 Regional	Queensland	23.95
Climate Zone 2 CBD & Suburban	Queensland, New South Wales	22.95
Climate Zone 2 Regional	Queensland, New South Wales	25.56
Climate Zone 7 CBD & Suburban	Australian Capital Territory, Victoria	21.39
Climate Zone 7 Regional	Tasmania, Victoria, New South Wales	16.96
Northern Territory	Northern Territory	18.31

Combined Reliability and Cost Index (CRCI),


$$CRCI = \gamma NPC_{VCR} + (1 - \gamma)NPC_{COE}$$

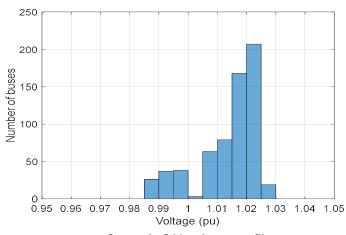
 NPC_{COE} is the net present worth of the cost of energy served NPC_{VCR} is the net present worth of the cost of customer reliability

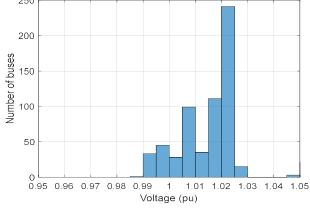
 γ = 0 means the ranking is done based on the economic/cost analysis γ = 1 means the ranking is done based on the reliability analysis γ is varied from 0 to 1 with a step of 0.1

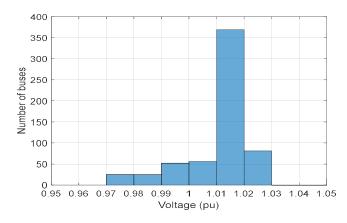
Ranking of Islanding Options

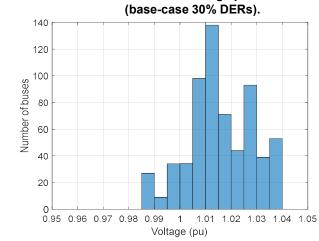
 γ = 1 means the ranking is done based on the reliability analysis

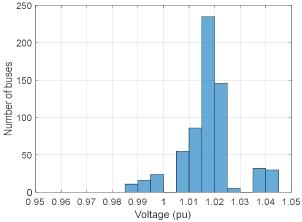
Reliability is given higher priority


 γ = 0.5 means the ranking is done based on reliability and cost analysis

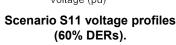

Cost is given higher priority


 γ = 0 means the ranking is done based on the cost analysis


Voltage Profile Analysis of Scenario 11



Scenario S11 voltage profiles


Scenario S11 voltage profiles (90% load from base case – 30% DERs).

Scenario S11 voltage profiles (115% load from base case – 30% DERs).

Voltage stays within the limit [0.94 to 1.06] in all cases

Scenario S11 voltage profiles (50% DERs).

A Review of Network Reliability Index: SAIDI

	Table 5: Jurisdiction	nal SAIDI Star	dards ²⁶		
Region	Utility Company	CBD	Urban	Rural Short	Rural Long
ACT	ActewAGL	-	40	40	40
	Ausgrid (Energy Australia)	45	80	300	700
New South Wales	Endeavour (Integral) Energy	-	80	300	none
	Essential (Country) Energy	Ε.	125	300	700
Oueensland	Ergon Energy	-	149	424	964
	Energex	15	106	218	-,
SA	ETSA Utilities	25	115	240 - 450	240 - 450
Tasmania	Aurora Energy CitiPower IEM	60 11	120 22 68	480 - 153	600 - 153
Victoria	Powercor SP AusNet United Energy	-	82 102 55	115 209 99	234
NT WA	Power and Water Corporation Western Power	30	160	290	290

Feeder
(length/location)
reliability
significantly affect
the overall power
supply reliability

S. Hesmondhalgh, W. Zarakas and T. Brown, "Approaches to setting electric distribution reliability standards and outcomes," The Brattle Group, London, 2012

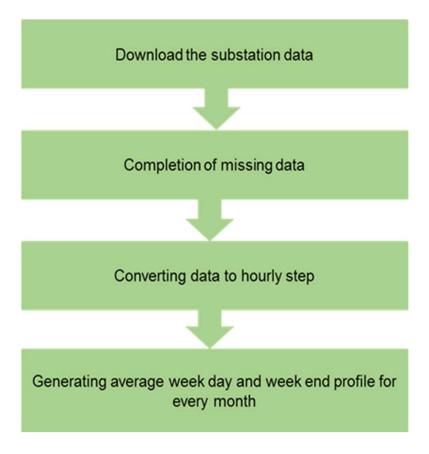
Summary

- Grid-connected operation is the most cost-effective design of microgrid.
- System reliability is increased in islanded mode.
- Based on the Combined Reliability and Cost Index, the islanded scenarios is slightly better.
- Islanded microgrid can meet the electric load demand reliably and continuously under different operation scenarios.
- ~ 5 days of outage per year as opposed to ~ 40 m\$ investment, which will lead to 5 times expensive electricity.

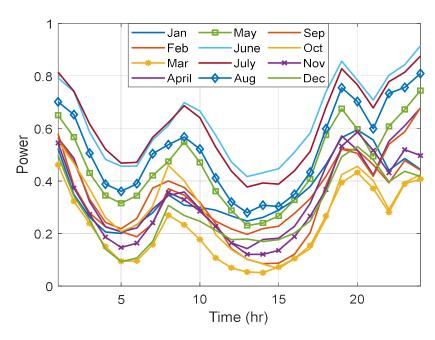


Further Considerations

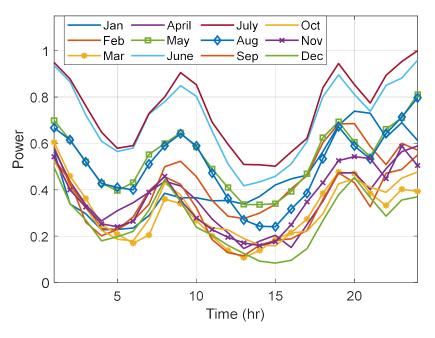
- Options for the cost recovery mechanism for islanded operation.
- Identifying the value stream for stranded assets in the microgrid.
- Analysis of the scenarios considering future battery/solar/grid price.
- Impact of the sensitivity of the VCR (Value of Customer Reliability).
- Estimation of the primary and secondary community benefits from islanding.



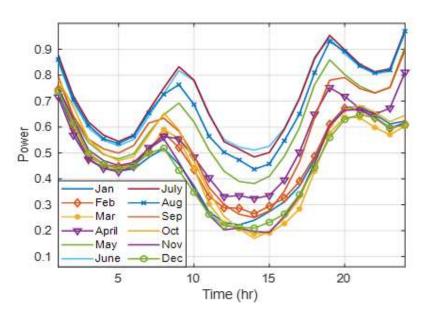
Thank You Q & A

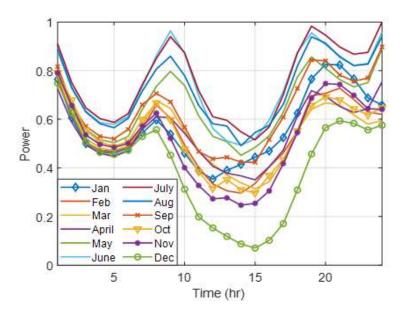


Data Analysis Framework



Data Analytics: Donald


Daily load profile for weekdays


Daily load profile for weekends

Data Analytics: Tarnagulla

Daily load profile for weekdays

Daily load profile for weekends

Sensitivity Analysis: S11

Base case

Parameters	Values
Investment cost (m\$)	1.60
NPC (m\$)	43
COE (\$/kWh)	0.369
Operation cost (m\$/yr)	2.67

50% cost reduction for Battery, PV, and converter

Parameters	Values
Investment cost (m\$)	5.88
NPC (m\$)	34
COE (\$/kWh)	0.3192
Operation cost (m\$/yr)	1.78

