

Model-Free DER Hosting Capacity and Operating Envelopes: Project Update

Part of the Model-Free Operating Envelopes at NMI Level Project

Thank you for joining!

This webinar will start soon.

Important Information

- We will start at 13:02 PM. ~40-min presentation followed by ~10-min Q&A session.
- Please use the Q&A box to ask any questions you might have.
- The webinar will be recorded and will be available after the event.

Model-Free DER Hosting Capacity and Operating Envelopes:

Project Update

Luis(Nando) Ochoa, Vincenzo Bassi, Tansu Alpcan and Chris Leckie

Webinar

15th Feb 2023

The Team Faculty of Engineering and Information Technology

Prof Nando Ochoa

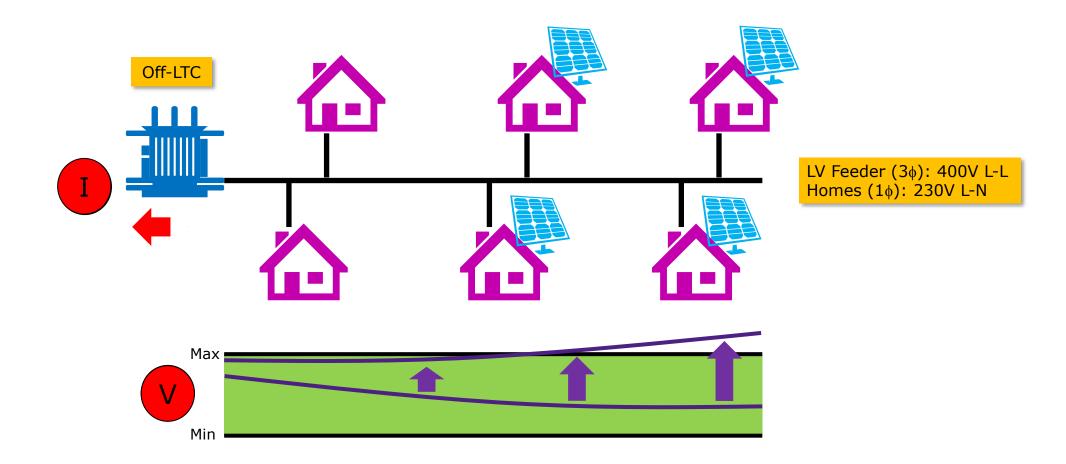
Vincenzo Bassi

Prof Chris Leckie

THE UNIVERSITY OF MELBOURNE

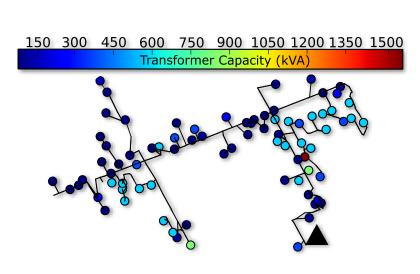
Outline

- 1. Voltage Calculations and DER¹
- 2. Our Model-Free Approach
 Improvements: Offline Data Pipeline and NN Recipe
- 3. Model-Free Applications
- 4. Too good to be true? Model-Driven vs Model-Free
- 5. Partial Smart Meter Data Availability
- 6. Key Remarks

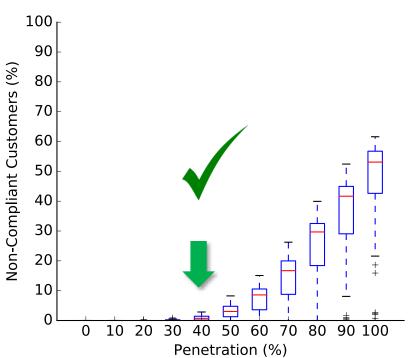

¹ DER = Distributed Energy Resources

1 Voltage Calculations and DER

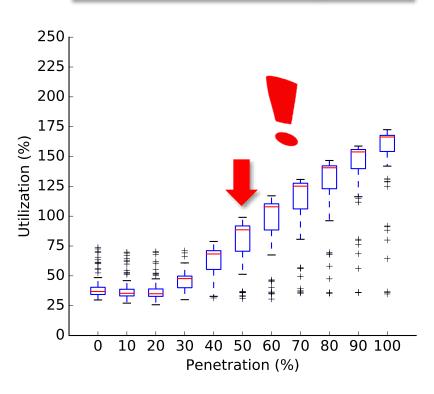
1 Voltage Calculations and DER DER & Low Voltage (LV) Networks



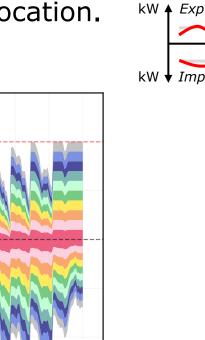
How can we determine the maximum exports (or imports) that our networks can withstand?

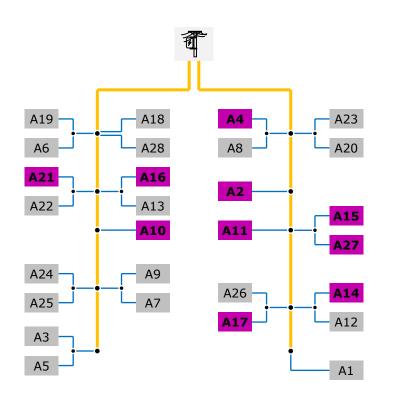


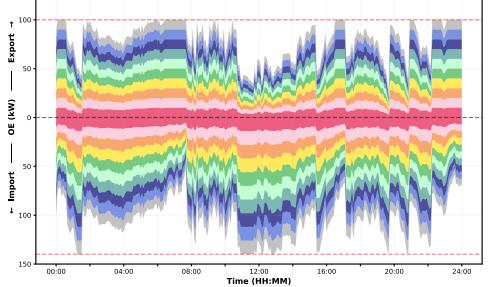
1 Voltage Calculations and DER Hosting Capacity



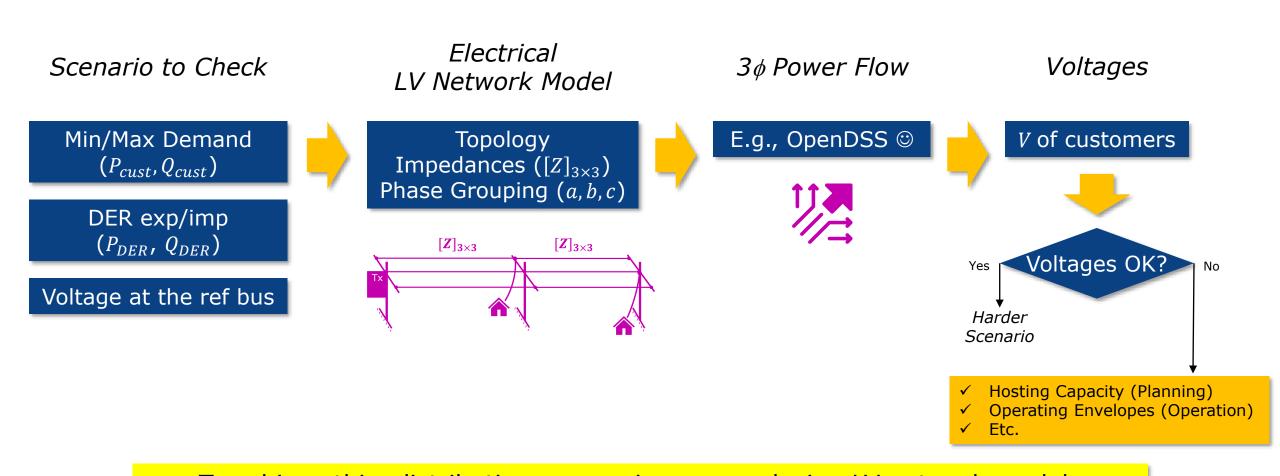
HV Conductors Congestion


Exploration of DER scenarios → **Power flows are essential**




1 Voltage Calculations and DER Operating Envelopes

- <u>Time-varying</u> maximum power imports/exports at the meter
- Calculated to ensure network integrity. Values may depend on location.



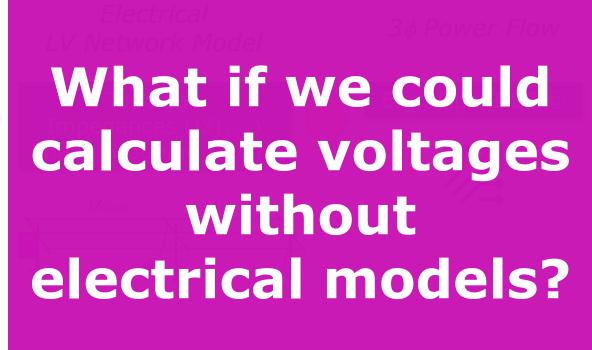
Again, exploration of DER scenarios → **Power flows are essential**

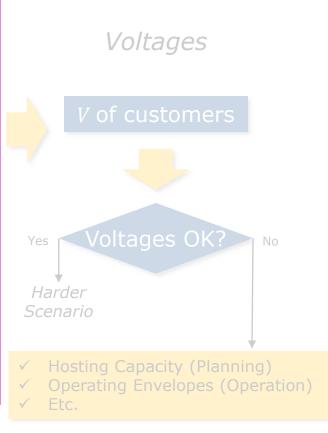
1 Voltage Calculations and DER Today (Ideally)

To achieve this, distribution companies are producing LV network models

→ Can be time-consuming, expensive and not 100% accurate²

² Errors in topology, phase grouping, impedances, neutral, grounding, etc.

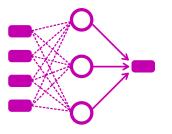

1 Voltage Calculations and DER Today (Ideally)


Scenario to Check

Min/Max Demand (P_{cust}, Q_{cust})

DER exp/imp (P_{DER}, Q_{DER})

Voltage at the ref bus



To achieve this, distribution companies are producing LV network models

→ Can be time-consuming, expensive and not 100% accurate²

² Errors in topology, phase grouping, impedances, neutral, grounding, etc.

2 Our Model-Free Approach

Electrical Model-Free Voltage Calculations Using Neural Networks and Smart Meter Data, IEEE Trans. on Smart Grid (ResearchGate)

Deliverables 3b-4: Improved Model-Free Operating Envelopes and Other Considerations, Report, 2023 (ResearchGate)

Deliverable 1-2-3a: Model-Free Voltage Calculations and Operating Envelopes, Report, 2022 (ResearchGate)

Deliverable 0: Concept, Smart Meter Data, and Initial Findings, Report, 2022 (ResearchGate)

Model-Free Voltage Calculations for PV-Rich LV Networks: Smart Meter Data and Deep Neural Networks, IEEE PES PowerTech 2021 (ResearchGate)

Calculating Voltages Without Electrical Models: Smart Meter Data and Neural Networks, CIRED 2021 (ResearchGate)

Next Webinar (Feb): Model-Free DER Hosting Capacity and Operating Envelopes: Project <u>Update</u> Our Latest Report: Deliverables 3b-4 "Improved Model-Free Operating Envelopes and Other Considerations" Our Latest Paper: Electrical Model-Free Voltage Calculations Using Neural Networks and **Smart Meter Data**

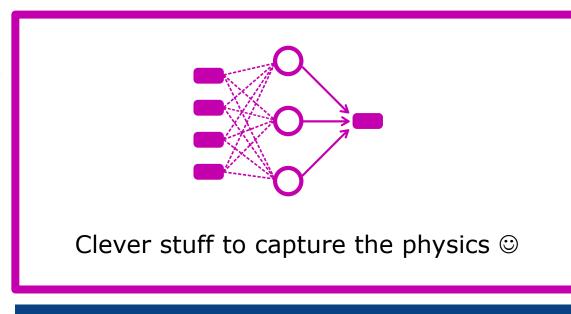
n

Timeline

Resources

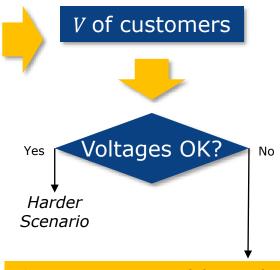
https://electrical.eng.unimelb.edu.au/power-energy/projects/model-free-operating-envelopes

Our Model-Free ApproachConcept


Scenario to Check

Min/Max Demand (P_{cust}, Q_{cust})

DER exp/imp (P_{DER}, Q_{DER})

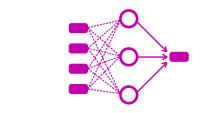

Voltage at the ref bus

Model-Free Voltage Calculations

Neural Network trained with historical Smart Meter data

Voltages

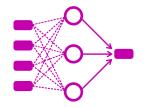
- ✓ Hosting Capacity (Planning)
- ✓ Operating Envelopes (Operation)
- ✓ Etc.


✓ Removes time and cost associated with the production of LV electrical models
 ✓ Extremely quick alternative to power flow-based techniques

2 Our Model-Free Approach Development and Application

1. <u>Development</u>: Production of the Neural Network (NN) using a recipe

Processing of Smart Meter Data (P, Q, V)


NN Training (<u>Recipe</u>) and Selection V = f(P, Q)

2. Application

DER Scenario or Forecasts (P, Q)

NN Calculates Voltages (V)

- ✓ Hosting Capacity
- **✓ Connection Request**
- ✓ Operating Envelopes

2 Our (Improved) Model-Free Approach Development 1/2

Smart Meter Data: <u>Improved</u> Offline Data Pipeline

Step 1: Collect raw historical per-phase smart meter data

Step 2: Pre-process the historical smart meter data to obtain *P* and *Q* values

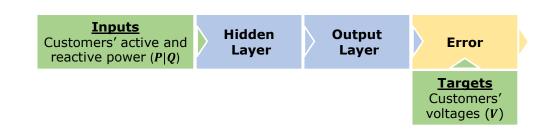
Step 3: Remove invalid and unfeasible instances

- ✓ Some customers have no consumption for most data points (e.g., construction)
- ✓ The NN will not be able to calculate voltages for P and Q very far from training.
- > Output: Training data set (P, Q, V)

The NN must be trained considering normal demand behaviours

³ Deliverables 3b-4: Improved Model-Free Operating Envelopes and Other Considerations, Report, 2023 (ResearchGate)

2 Our Model-Free Approach Development 2/2



NN Training (Recipe) and Selection

Step 5: Define NN hyperparameters and settings according to NN recipe⁴

> Enhanced extrapolation capabilities and reduced production time

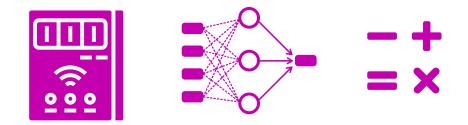
Hyperparameters and Settings			
Inputs	2 C		
Outputs	<i>C</i>		
Output Act. Function	Linear		
Error Function	MSE		
Scaler	[0,1]		
Optimiser	ADAM		
Regularisation	L2		
Number of Neurons	5 <i>C</i>		
Activation Function	Tanh		
Learning Rate	1e-4		
Regularisation Factor	1e-5		
Batch Size	Eq. to 6 hours		
Epochs	2,000		

The NN can be produced in minutes

Step 6: 10 NNs based on Step 5 are trained from scratch. Select the lowest RMSE in training.

➤ **Output:** Final NN ready for voltage calculations V = f(P, Q) \odot

⁴ Electrical Model-Free Voltage Calculations Using Neural Networks and Smart Meter Data, IEEE Trans. on Smart Grid (ResearchGate)


2 Our Model-Free Approach What has been achieved so far?

- ✓ Accurate and quick multi-LV circuit voltage calculations
 - One NN per transformer (all LV circuits simultaneously captured)
- ✓ Only 3 weeks of historical data (P, Q, and V) are required
 - Data from all customers connected to the transformer
 - No topological changes in the historical data
- ✓ NN can be used for multiple months without updates
 - If no changes in the LV network have occurred
- ✓ Several applications tested
 - Operating Envelopes, Connection Request, Hosting Capacity

✓ Removes time and cost associated with the production of LV electrical models
✓ Extremely quick alternative to power flow-based techniques

Model-Free Applications

Model-Free Applications Jemena Case Study

- Site: 1 Distribution transformer with 4 LV circuits
- 148 Customers:
 - > 110 single-phase
 - > 38* three-phase
 - \triangleright Total of **222** customers for the NN ($|C| = 110 + 2 \times 2 + 36 \times 3$)
- **Resolution:** 5 minutes (P, Q, V)
- **NN Production:** ~3 weeks (Training data)
- Performance Assessment: ~Next 3 weeks (Test data)

- → **Objective 1:** Produce a single Neural Network for all 4 LV circuits
- → **Objective 2**: DER Connection Request, DER Hosting Capacity and Operating Envelopes

^{* 1} phase from 2 three-phase customers were removed due to unfeasible measurements

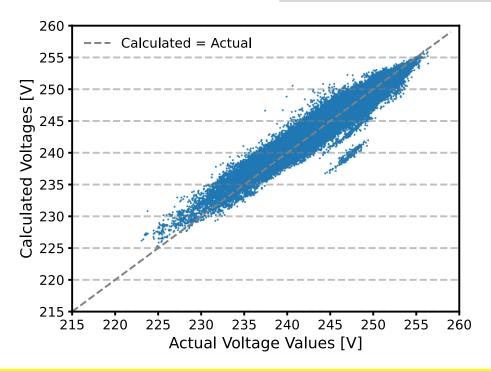
Model-Free Applications NN Production using Training Data

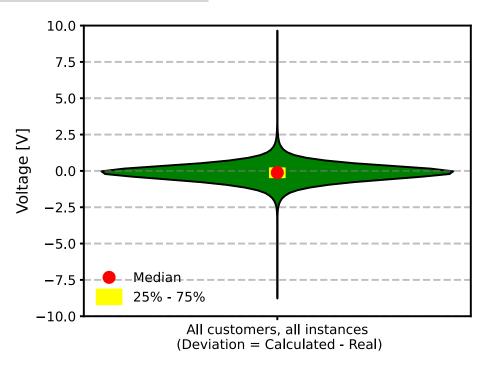
Hyperparameters and Settings (Recipe)			
Inputs	2 C = 444		
Outputs	C = 222		
Output Act. Function	Linear		
Error Function	MSE		
Scaler	[0,1]		
Optimiser	ADAM		
Regularisation	L2		
Number of Neurons	5 C = 1,110		
Activation Function	Tanh		
Learning Rate	1e-4		
Regularisation Factor	1e-5		
Batch Size	Eq. to 6 hours		
Epochs	2,000		

a 10 NNs are trained from scratch

b Final NN based on RMSE Training

NN <u>recipe</u> massively reduces the computational time to produce the NN

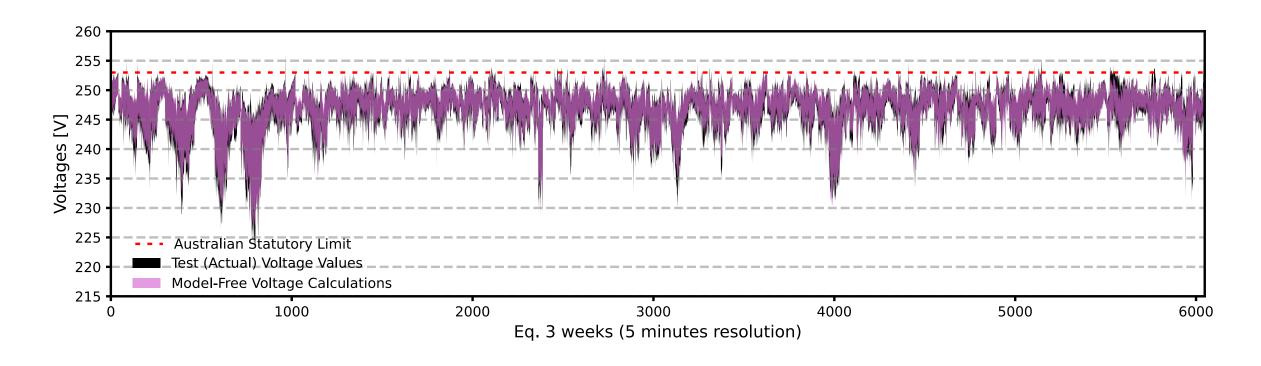

From weeks (hyperparameter exploration) to minutes!



3 Model-Free Applications

NN Accuracy using Test Data (all 148 Customers)

Model-Free Voltage Calculations Results			
RMSE Test [V]	0.64		
Av Dev Test [V]	0.48		
Max Dev Test [V]	9.86		



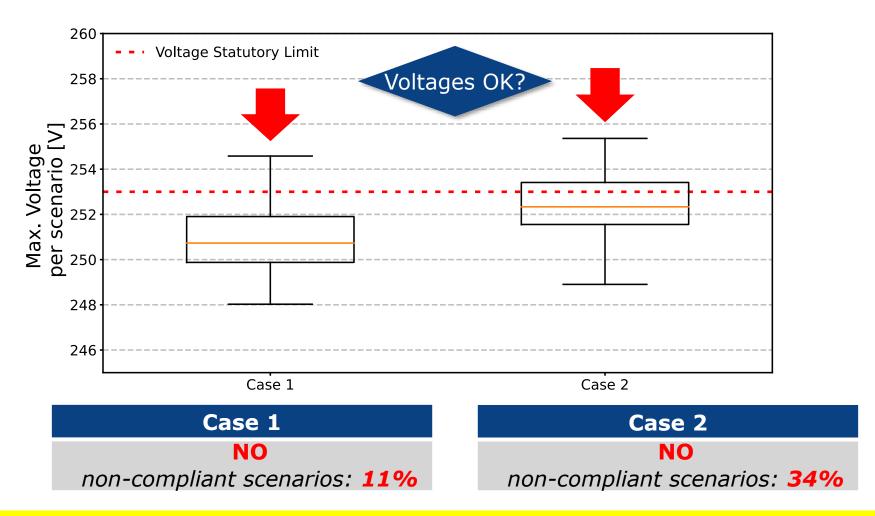
Improved results: Voltage calculations with an avg deviation of less than 0.5 V (out of around 230 V)

Model-Free Applications NN Accuracy using Test Data (all 148 Customers)

Accurate voltage calculations ©

Model-Free Applications DER Connection Request

Can a single customer install a 5 kW PV system?


Intensive Assessment using Monte Carlo

- \triangleright Customers with PV $P_{PV} = -5 \, kW$ (high exports)
- > Single customer being assessed: $P_{PV} = -5 kW$ (high exports)
- 100 demand scenarios
 - $P_{Load} = random(0,1) kW(low demand)$
 - $pf = inductive \ random(0.90,0.99)$
- > Two cases
 - Case 1: Customer with low voltages (closer to the trafo)
 - Case 2: Customer with high voltages (far from the trafo)
- ➤ Check: Compliance with voltage statutory limits (≤ 253 V)

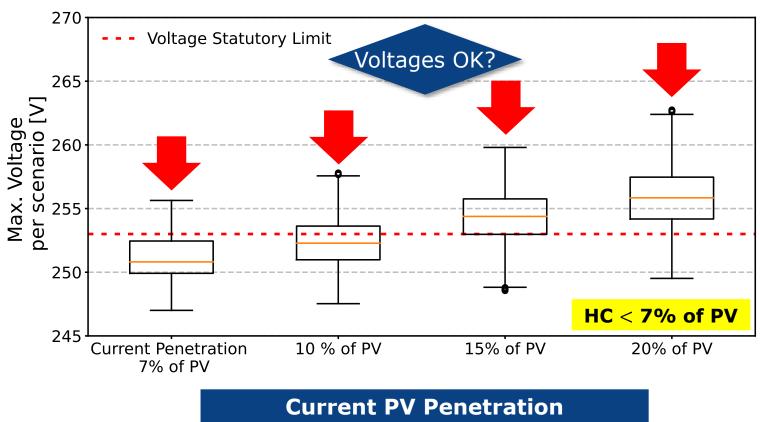
Model-Free Applications DER Connection Request - Results

DER connection requests can be assessed extremely fast © (even Monte Carlo is just few seconds)

Model-Free Applications DER Hosting Capacity

How much PV systems the LV network can withstand?

Intensive Assessment using Monte Carlo


- \triangleright Customers already with PV $P_{PV} = -5 kW$ (high exports)
- > 100 PV allocation scenarios
 - Customers installing PV are randomly allocated $P_{PV} = -5 kW$ (high exports)
 - 100 Demand scenarios (low demands, same as before)
- > Four progressive PV penetration scenarios
 - ~7% (current PV), ~10%, ~15% and ~20% of customers with PV
- > Check: Compliance with voltage statutory limits (≤ 253 V)

Improvement: Active and reactive power can be specified ©

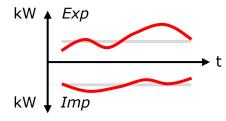
Model-Free Applications DER Hosting Capacity - Results

Current PV Penetration
(7% of PV)

NO

non-compliant scenarios: 18%

Super quick DER hosting capacity assessments (a few mins depending on penetrations)

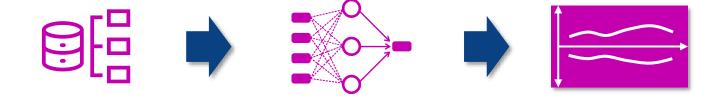

Model-Free Applications Operating Envelopes

Operating Envelopes

How much exports from active customers the LV network can withstand?

Assessment

- > OEs are calculated for a single instance (noon)
- > Passive customers:
 - Demands (P and Q) from the previous instance (5 mins ago)
- > Active customers:
 - ~50% of customers with PV (12) are selected as active customers (6)
 - $P \rightarrow$ Equal opportunity OEs; Progressive assessment of exports
 - pf = 1
- ➤ Check: Compliance with voltage statutory limits (≤ 253 V)


Model-Free Applications Operating Envelopes - Results

Exports	Max Voltage
0 kW	248.37 V
1 kW	248.89 V
2 kW	249.72 V
3 kW	250.11 V
4 kW	250.75 V
5 kW	251.39 V
6 kW	252.03 V
7 kW	252.66 V
8 kW	253.30 V

Again, super quick OE calculations ©

Model-Driven vs Model-Free

Our Latest Webinar: Reactive power and voltage regulation devices to enhance operating envelopes (Slides)

Our Latest Paper: <u>Using OPF-Based Operating Envelopes to Facilitate Residential DER</u>

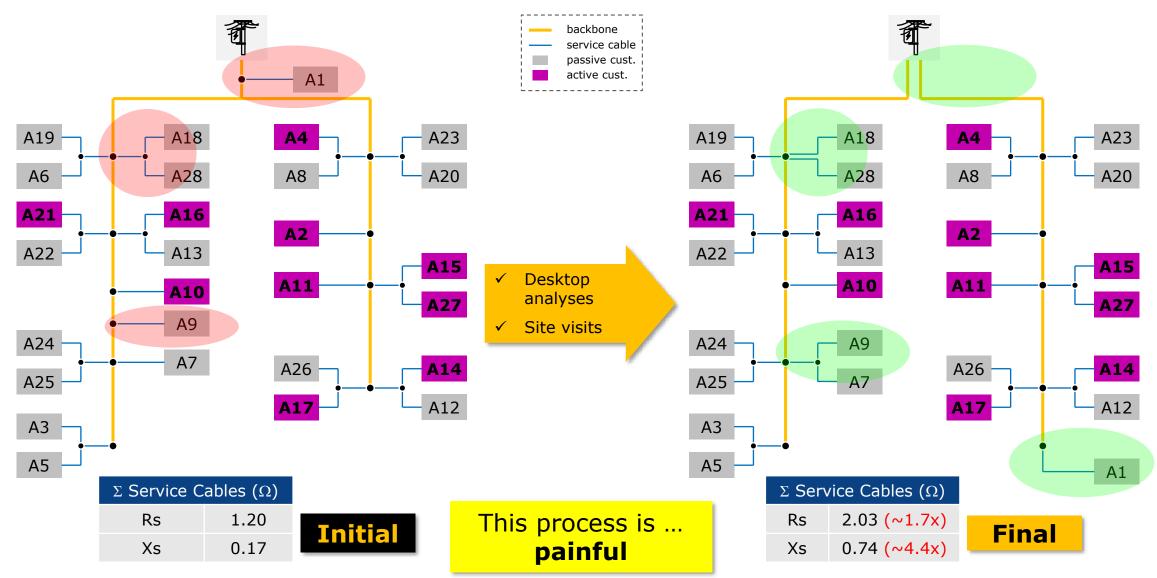
<u>Services</u>

Reports now available: <u>Operating Envelopes Calculation Architecture</u> and <u>High-level</u>
<u>Assessment of Objective Functions</u>

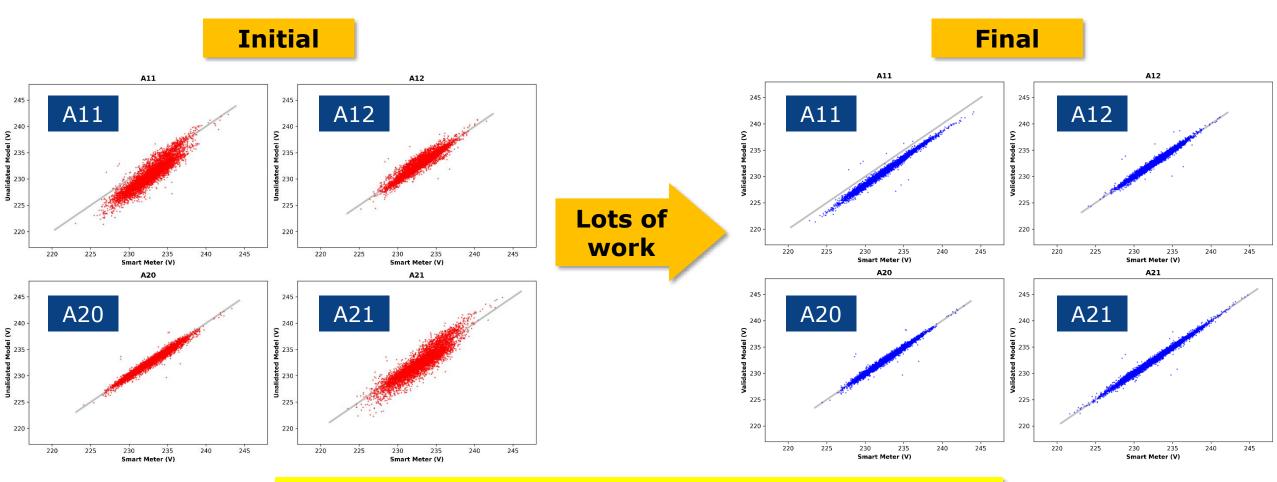
fi

Timeline

Resources



https://electrical.eng.unimelb.edu.au/power-energy/projects/project-edge


4 Model-Driven vs Model-Free

Unvalidated vs Validated Electrical Model (EDGE AusNet SiteA)

4 Model-Driven vs Model-Free Unvalidated vs Validated Electrical Model (Voltage Calculations)

Initial Model → Does not capture the physics
Final/Validated Model → Way better ☺

... but, can we do this in just minutes instead of weeks?

4 Model-Driven vs Model-Free Implementing our Model-Free Approach in EDGE

NN Adaptation

> Using smart meter data + head-of-feeder voltage measurements⁵:

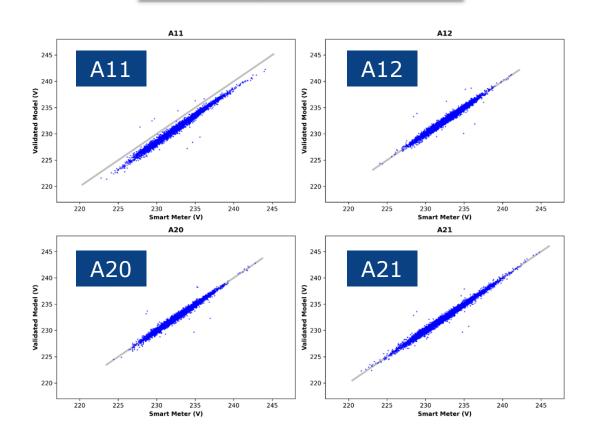
$$V = f_{NN}(P, Q, W) \rightarrow V = f_{NN}(P, Q, V_h, W)$$

Development → **Same as before**

- > Data Processing
 - Historical smart meter data + head-of-feeder voltages (~6 weeks, 5min)
- > NN Production
 - Use NN recipe

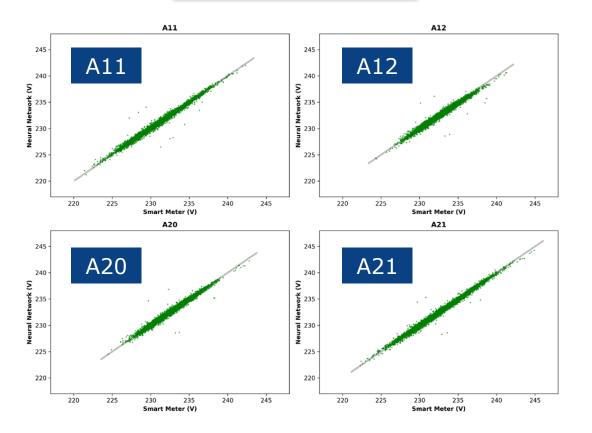
A very straightforward process ©

⁵ Deliverable 0: Concept, Smart Meter Data, and Initial Findings, Report, 2022 (ResearchGate)



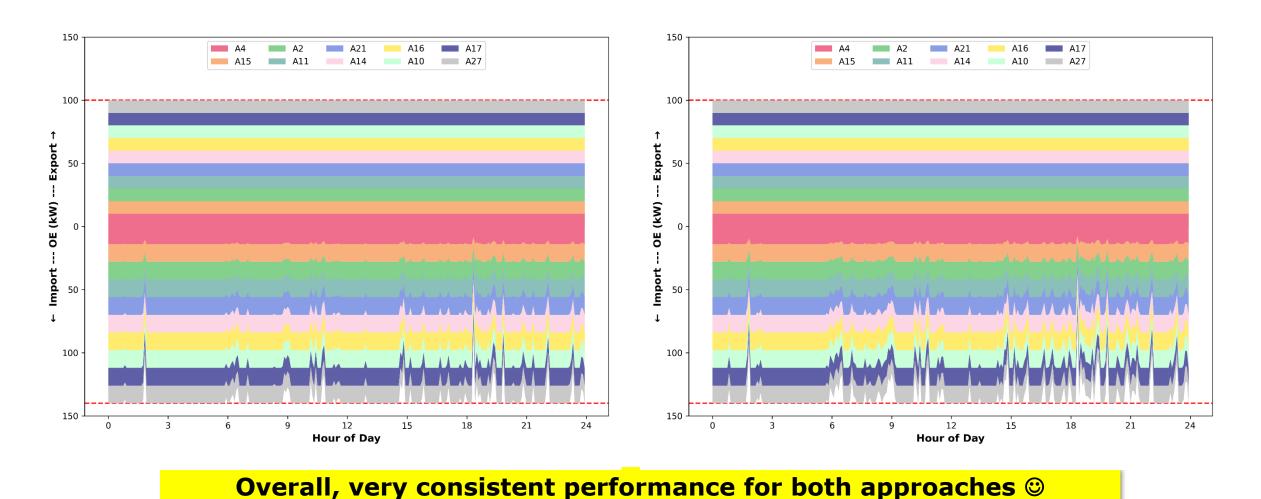
4 Model-Driven vs Model-Free

Validated Electrical Model vs NN (Voltage Calculations)


Electrical Model

Slow, expensive process

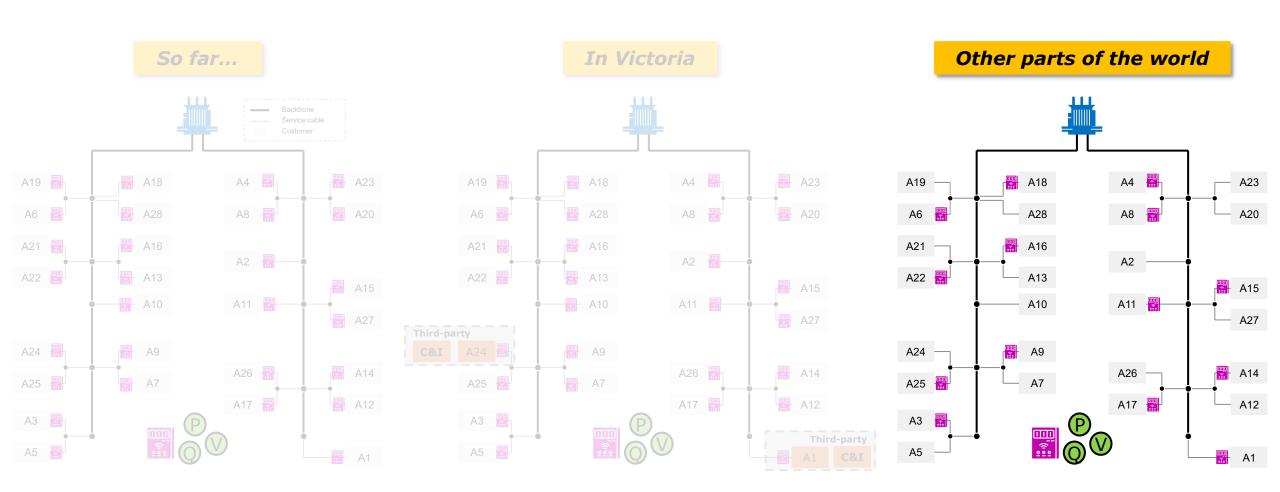
Neural Network
Fast and cheap ©



NN outperforms the electrical model!

4 Model-Driven vs Model-Free

OEs for Site A³ - Model-Driven (Left) vs Model-Free (Right)



Description Partial Smart Meter Data Availability

Dartial Smart Meter Data AvailabilityContext

Key Question: Can we use our method when data from all customers is not available?

5 Partial Smart Meter Data Availability Preliminary Analyses – Overview and Assumptions

Partial vs Full Observability

- > Partial: Data from all 3Φ customers is assumed unavailable
 - Data is <u>not used</u> to produce the NN or to assess its performance
- > Full: Data from all customers is available
 - All data is used

Jemena Case Study

- > Site: 1 Distribution transformer with 4 LV circuits
- > **148 customers:** 110 1Φ and 38* 3Φ
- \triangleright NN Production: Resolution: 5 minutes (P, Q, V)
- ➤ NN Production: ~3 weeks (Training data)
- > Performance Assessment: ~Next 3 weeks (Test data)

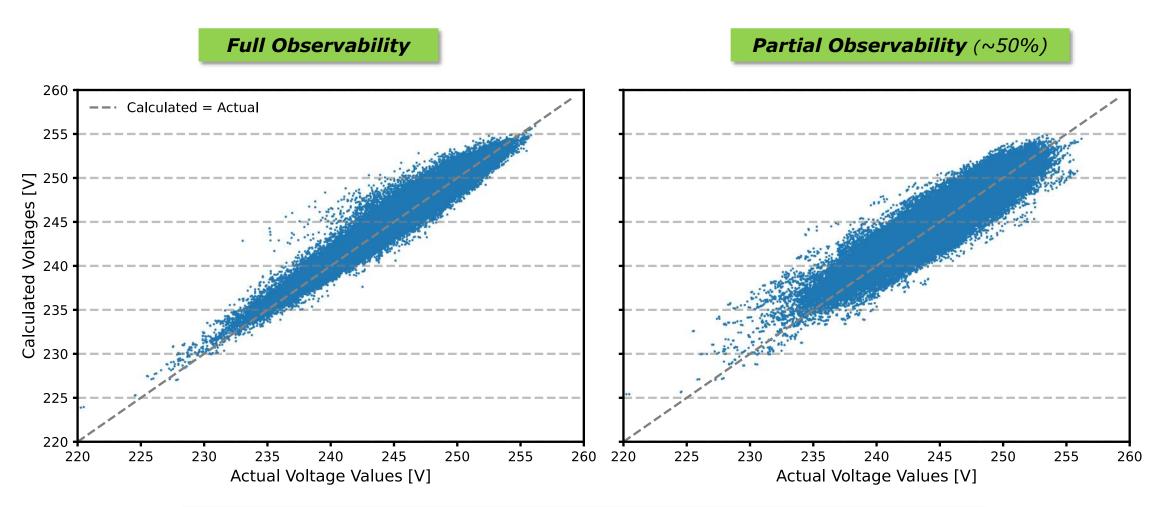
^{* 1} phase from 2 three-phase customers were removed due to unfeasible measurements

5 Partial Smart Meter Data Availability

Preliminary Analyses – Results

Scenario	Inputs (Ps and Qs)	Outputs (Vs)	Training data points
Full Observability	2*(110 + 2*2 + 36*3) = 444	110 + 2*2 + 36*3 = 222	<u>4,027,968</u>
Partial Observability	110*2 = <u>220</u>	<u>110</u>	<u>1,995,840</u>

Almost 50% of the data is not available!


Scenario	RMSE Test [V]	Av Dev Test [V]	Max Dev Test [V]
Full Observability	0.55	0.43	9.70
Partial Observability	0.97	0.76	9.88

Despite the accuracy decrease in the case of partial observability, accurate voltage calculations are obtained in both scenarios ©

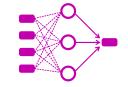
5 Partial Smart Meter Data Availability

Preliminary Analyses – Results

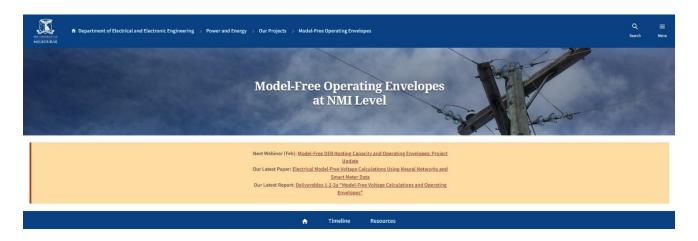
Accuracy decrease with partial availability (as expected). But we can still produce accurate voltage calculations ©

Partial Smart Meter Data AvailabilityFurther Details

- What about the calculation of OEs?
 - > You can find this in our latest report available at ResearchGate
 - > Spoiler Alert: Consistent OEs are obtained @
- Deliverables 3b-4: Improved Model-Free Operating Envelopes and Other Considerations
 - ✓ Offline Data Pipeline Improvements
 - ✓ Operating Envelopes Allocation Technique: Maximise Exports
 - ✓ Voltage Regulation Devices
 - ✓ Partial Smart Meter Data Availability


Key Remarks

6 Key Remarks


- > NNs can capture the physics of LV networks
- > Once the NN is ready, it becomes an alternative to calculate voltages
 - Extremely quick (many times faster than power flows) to assess DER connection request DER Hosting Capacity, Operating Envelopes, etc.
- > NN can even **outperform** good electrical models
- > Minimum data needed? 3 weeks (5-min res) and (potentially) ~50% of data/customers
- Some Challenges Remain
 - > Reactive power still bring some headaches
 - > Topological changes? -> NN needs updating (same for any electrical model)
 - But a NN could flag this change
 - > **SWER networks?** > Tricky but not impossible

Further Reading

Our Project

https://electrical.eng.unimelb.edu.au/power-energy/projects/model-free-operating-envelopes

Latest Publications

Electrical Model-Free Voltage Calculations Using Neural Networks and Smart Meter Data, IEEE Trans. on Smart Grid (ResearchGate)

Deliverable 3b-4: Improved Model-Free Operating Envelopes and Other Considerations, Report, 2023 (ResearchGate)

Deliverable 1-2-3a: Model-Free Voltage Calculations and Operating Envelopes, Report, 2022 (ResearchGate)

Deliverable 0: Concept, Smart Meter Data, and Initial Findings, Report, 2022 (ResearchGate)

Model-Free Voltage Calculations for PV-Rich LV Networks: Smart Meter Data and Deep Neural Networks, IEEE PES PowerTech 2021 (ResearchGate)

Calculating Voltages Without Electrical Models: Smart Meter Data and Neural Networks, CIRED 2021 (ResearchGate)

Thanks! Questions?

luis.ochoa@, v.bassizillmann@, tansu.alpcan@ and caleckie@unimelb.edu.au

Acknowledgement

- John Theunissen
- Tobie DeVilliers
- Thanh Bui

Melbourne
 Energy Institute