

WP 1.6 Whole-State Network Impact Assessment: Final Report

Milestone Report 4: 14/03/2025

Report for C4NET

Project Consortium

The University of Melbourne

Dr. Arthur Gonçalves Givisiez and Prof. Nando Ochoa

Disclaimer

The views, opinions, findings, conclusions or recommendations expressed in this publication are strictly those of the authors. They do not necessarily reflect the views of C4NET, its members or project partners. C4NET takes no responsibility for any errors, omissions, correctness or misuse of any element of the publication.

Acknowledgement

This research is part of a program of fourteen projects, which have variously been funded and supported under C4NET's Enhanced System Planning collaborative research project. While conducted independently, the authors acknowledge the funding and in-kind support of C4NET, its members and supporters, and its ESP project partners.

Executive Summary

This report corresponds to Milestone 4 "Final Report" for Work Package 1.6 (WP1.6) "Whole-State Network Impact Assessment" as part of the Centre for New Energy Technologies (C4NET)'s Enhanced System Planning (ESP) project.

The project assesses the impact of electrification on 6 subtransmission networks and extrapolates MV-LV network assessments for different types of MV feeders (carried out in WP1.5) to the entire state of Victoria considering a baseline scenario without DOEs and scenario with a progressive adoption of DOEs by residential customers. The following considerations are used for the scenarios:

- Without DOEs: all PV inverters have 5kVA rated capacity and their functions (Volt-Watt and Volt-Var, following AS/NZS4777.2:2020 Australia A settings) are enabled, and DOEs are not implemented.
- With DOEs: PV inverter functions are still enabled, and DOEs (both exports and imports) are implemented on the following adoption rates:
 - ✓ Export DOEs (and upgrade to 10kVA PV inverter)
 - o 2028 apply to new PV customers.
 - o 2033 apply to 50% of existing PV customers.
 - o 2038 apply to 100% of existing PV customers.
 - √ Import DOEs
 - o 2033 apply to new EV customers.
 - o 2038 apply to 100% of existing level-2 EV customers.
 - Only level-2 EV demand will be managed

Key findings from the simulations are presented below, along with **Recommendations** to advise Victorian distribution companies on network planning beyond 2030. These recommendations will ultimately help accelerate the electrification of distribution networks in alignment with Victoria's goal of achieving net-zero emissions.

Key Findings

Whole-State Extrapolation

MV-LV Voltage Assessment

- 1. In the next decade (starting from 2023), PV penetration is expected to grow steadily, and voltage issues can emerge as a limiting factor for further PV uptake. Typically for those ZSS with MV-LV networks less robust to voltage changes (i.e., ZSS with many urban and short-rural feeders).
- 2. From 2033, the PV uptake slows down and net demand rises significantly due to the presence of increasing EV adoption and residential electrification (i.e., heating/cooling and hot water systems), which further exacerbate voltage issues. Note that since the voltage regulation devices in this study are operated to ensure equal voltage headroom and footroom, more voltage drop issues have emerged as a result of managing PV-related voltage rise issues. This indicates that voltage

- regulation devices (i.e., tap positions) have been exhausted to maintain customer voltages within both upper and lower limits.
- 3. The adoption of export DOEs by residential customers effectively mitigate voltage rise issues caused by PV export once applied to all residential PV customers (by 2038). However, since PV inverters functions (i.e., Volt-Watt and Volt-Var) already enforce PV curtailment to help regulate voltages in the scenario without DOEs, the additional benefits of export DOEs may be limited.
- 4. Since import DOEs are applied only to Level-2 EV charging, only a small fraction of the demand is managed (up to 30%). Over time, the demand from residential electrification (i.e., heating/cooling and hot water systems) becomes significant, resulting in more voltage drops and heavy asset utilisation. Consequently, managing Level-2 EV demand alone is insufficient to resolve both voltage and thermal I issues.

MV-LV Thermal Assessment

- 1. By 2028, about 4% (~6,800, out of the estimated 170, 000) of state distribution transformers are expected to experience overloading, escalating to 14% (~23,800) by 2033, and 24% (~40,800) by 2038. This rapid increase in overloaded transformers could severely limit further DER uptake without network augmentation.
- 2. The adoption of import DOEs by residential customers shows positive impacts on thermal performance of distribution transformer from 2033 onwards. The number of overloaded transformers decreases by 1% (~1,700) to 5% (~8,500) annually between 2033 and 2053, with 2% (~3,400) to 5% (~8,500) fewer transformers experiencing extreme overloading (>150%). These improvements will significantly reduce required network augmentation investments across the state.

PV Curtailment Assessment

- For the scenario without DOEs, PV curtailment increases from 410 GWh (6%) in 2023 to 3,878 GWh (24%) in 2053 as PV penetration grows from 27% to 47%. This curtailment is mainly due to 5 kVA inverter capacity limits and Volt-Watt function constraints, limiting renewable energy penetration across MV-LV networks.
- 2. For the scenario with DOEs, initially, export DOEs reduce curtailment slightly (8% or 983 GWh in 2028, compared to 9% or 793 GWh without DOEs). However, as export DOE adoption increases, curtailment surpasses the without-DOEs scenario due to additional constraints and the "Equal Allocation" strategy. By 2033, curtailment reaches 1,865 GWh (13%), and by 2053, it reaches 7,872 GWh (34%). Note that PV inverters are upgraded to 10 kVA in the DOEs scenario, unlocking greater PV potential but also increasing curtailment.

EV Management Assessment

With residential customers adopting import DOEs for Level-2 EVs from 2033, Victorian residential
customers should expect some EV charging delays. Analysis shows these delays average around
5 hours throughout the study period. Nevertheless, these delays primarily occur overnight,
minimizing disruptions for EV users.

Impact Assessment of Subtransmission Networks

Terminal Station Assessment

- 1. Terminal stations are expected to face severe overloading issues between 2033 and 2048, with 2033 peak utilization rates of 119-146% and overutilization periods of 8-14 hours during peak demand days. ERTS and TTS are the earliest to face significant overloading by 2033, reaching 133% and 146% utilization respectively. By 2053, the situation worsens across all networks, with overloading reaching 131-345% and overutilization periods extending to 14-24 hours. ERTS and TTS show the most severe projections, potentially exceeding 340% utilization, while GNTS shows the least severe overloading at 131% by 2053, though still critical.
- 2. Terminal stations are expected to have diverse power factor performance from 2023 to 2053. Three stations (MBTS, SMTS, and TSTS) maintain power factors higher than the 0.9 statutory limit throughout the entire period. Four others face challenges: ERTS and GNTS drop below 0.9 by 2038, TTS by 2043, and CBTS by 2048. These power factor issues are projected to worsen over time for these four stations.
- 3. The adoption of import DOEs by residential customers consistently reduces load across all terminal stations, with impacts ranging from less than 1% in 2023 to 14% by 2053. ERTS shows the most significant reduction (14%, 318 MVA) by 2053. However, despite these reductions, all six terminal stations continue to exceed their thermal limits in the same years as in the scenario without DOEs. TSTS experiences a brief respite in 2033, with load reduction bringing it within thermal capacity (531 MVA) and potentially delaying upgrades by 5 years, but this benefit is short-lived. While import DOEs provide some load relief, they are insufficient to resolve the long-term thermal capacity issues or significantly delay the need for upgrades at these terminal stations.
- 4. The adoption of import DOEs by residential customers results in slight power factor improvements at terminal stations. GNTS shows improvement from 2043, while CBTS, ERTS, and TTS improve from 2048 onward. However, compared to the scenario without DOEs, these improvements are insufficient to bring any station into compliance with the statutory power factor limit (≥0.9).

Subtransmission Voltage Assessment

- 1. Subtransmission networks are expected to face varying degrees of undervoltage issues projected to occur between 2033 and 2048, with TSTS being the only exception, showing no voltage issues throughout the assessment period (2023-2053). The percentage of affected buses ranges from 7% in GNTS-MBTS by 2033 to 39% in SMTS by 2038. These undervoltage problems primarily affect the 66kV networks, but some 22kV networks (secondary of ZSSs) are also impacted, indicating that OLTCs at both terminal stations and ZSSs, as well as capacitor banks, have reached their operational limits in maintaining voltage levels. The issues generally occur during early morning and peak periods (morning and evening) of the worst day (winter peak), attributed to high loading conditions caused by electrified heating systems, increased adoption of cooling systems, and rising EV usage by residential customers.
- The adoption of import DOEs by residential customers generally results in slight improvements to subtransmission voltages, with effects becoming noticeable between 2038 and 2053, depending on the network. However, these improvements are largely insufficient to bring voltages within

statutory limits for most networks, when compared to the scenario without DOEs. The TTS subtransmission network stands out as an exception, where the small voltage improvement in 2038 is enough to eliminate voltage issues for that year, potentially delaying necessary upgrades by 5 years. Nevertheless, even for TTS, the improvements are not sufficient to maintain voltages within statutory limits after 2043.

Subtransmission Thermal Assessment

- ZSS transformers across all subtransmission networks are expected to face escalating overloading issues. ERTS, SMTS, and TTS encounter concerning problems by 2033, CBTS and GNTS-MBTS by 2038, and TSTS by 2048. By 2053, overloading becomes critical, with 36% (GNTS-MBTS) to 100% (TTS) of transformers exceeding 150% utilization. Peak rates reach up to 441% (SMTS), with some networks experiencing overloads for an average of 11 hours during peak demand days.
- 2. Subtransmission networks are expected to face varying degrees of 66kV line overloading issues between 2038 and 2053. Four networks (CBTS, ERTS, SMTS, and TTS) face significant challenges, while GNTS-MBTS and TSTS are expected to remain without issues throughout the assessment period (2023-2053). By 2038, the affected networks show 10-23% of lines experiencing significant overload (110-150%) for 5-7 hours on average, with some lines in TTS already facing extreme overload (>150%). The situation worsens by 2053, with CBTS experiencing the most severe issues (62% of lines exceeding 150% utilization for over 8 hours), followed by TTS (40% of lines exceeding 150%). Peak utilization rates reach up to 241% in ERTS and 244% in TTS.
- 3. The adoption of import DOEs by residential customers across all six subtransmission networks results in slight loading reductions on ZSS transformers, observed from as early as 2028 in GNTS-MBTS to 2038 in TSTS. These reductions decrease both the intensity and duration of overloads, but upgrades remain necessary for all networks as the number of overutilized transformers has not significantly decreased, and capacity issues persist.
- 4. The adoption of import DOEs by residential customers reduces the intensity and duration of 66kV line overloads in CBTS, ERTS, SMTS, and TTS networks from 2033-2038. However, while providing some relief, these reductions are insufficient to eliminate the need for network upgrades as capacity issues persist.

Recommendations

Whole-State Extrapolation

- Continue implementing export DOEs to enable larger export limits (greater than 5 kVA)
 where/when network conditions allow. This approach should allow some customers to generate
 more renewable energy and make a more efficient use of the network infrastructure, while
 mitigating both voltage and thermal issues.
- 2. **DOEs should not stop in exports, import DOEs should also be implemented** to mitigate high power flows, which is expected to be driven by widespread EV adoption and electrification of loads. However, **import DOEs should be extended to most if not all controllable loads** (e.g.,

- heating/cooling) where possible, given that this study shows that implementing import DOEs only to level-2 EVs is not enough to solve voltage issues.
- 3. Upgrade voltage regulation devices on MV-LV networks across the state by expanding the tap range of zone substation OLTCs or by upgrading distribution transformers with additional tap positions. This will enable better voltage management and facilitate further DER uptake. Implement these upgrades starting with networks already experiencing problems, followed by those prone to future voltage issues.
- 4. Upgrade distribution transformers facing significant (110%-150%) overload for long periods, and extreme (>150%) overload to increase network capacity. Any upgrades should account for expected future loads to ensure sufficient capacity in the medium to long term, minimizing the need for frequent reinforcements.

Subtransmission Networks

- Take measures to address the expected high loading conditions at ERTS and TTS by 2033, at CBTS and TSTS by 2038, at SMTS by 2043, and at GNTS-MBTS by 2048. Options may include upgrading the substation's capacity, implementing demand management strategies, or exploring alternative power supply configurations (e.g., use interconnection with other subtransmission networks).
- 2. **Take measures to correct the expected low inductive power factor** at ERTS by 2038, at TTS by 2043, and at CBTS and GNTS by 2048. Options may include upgrading existing capacitor banks or installing additional ones.
- 3. Conduct further studies with detailed modelling of the terminal stations of CBTS, SMTS, TTS, including its transformers and OLTCs, since the current models do not include them. This would provide a more accurate assessment of voltage profiles under load electrification scenarios during peak demand days, potentially eliminating voltage issues on these networks.
- 4. Upgrade ZSSs facing significant (110%-150%) overload for long periods, and extreme (>150%) overload to increase network capacity. Any upgrades should account for expected future loads to ensure sufficient capacity in the medium to long term, minimizing the need for frequent reinforcements.
- 5. Take measures to reduce the loading on subtransmission lines facing significant (110%-150%) overload for long periods, and extreme (>150%) overload to increase network capacity. Options may include constructing new subtransmission lines, implementing demand management strategies, or exploring alternative power supply configurations (e.g., use interconnection with other subtransmission networks).
- 6. Expand import DOEs to cater for all controllable loads, given that this study shows that implementing import DOEs only to level-2 EVs already alleviate the demand on subtransmission networks, but it is not substantial. This will mitigate the expected surge in demand over the next 30 years. This strategy should reduce augmentation investments in both MV-LV and subtransmission networks.

Table of Contents

Project Consortium	2
Executive Summary	3
Table of Contents	8
Abbreviations and Acronyms	9
List of Considerations and Assumptions	10
Project Overview	11
2. Methodology	14
3. Project Results	22
4. Key Findings	83
5. Recommendations	87
6. Appendix	89

Abbreviations and Acronyms

AEMO	Australian Energy Market Operator
C4NET	Centre for New Energy Technologies
DER	Distributed Energy Resource
DNSP	Distribution Network Service Provider
ESP	Enhanced System Planning
EV	Electric Vehicle
LV	Low Voltage
MV	Medium Voltage
PV	Photovoltaics
ZSS	Zone Substation

List of Considerations and Assumptions

Impact Assessment Stage

- 1. In cases where the provided OpenDSS model, which was provided by WP 1.4, lacked zone substation peak demand data, the information provided by the DNSPs was used instead.
- 2. For zone substations containing urban MV feeder type, it was assumed that half of these feeders are urban, while the other half are suburban.
- 3. For zone substations containing rural MV feeder type, it was assumed that half of these feeders are short rural, while the other half are long rural.
- 4. Network augmentation or planned connections/expansions are not considered in this study, i.e., distribution networks (both subtransmission and MV-LV) are assumed to remain unchanged throughout the assessment period (2023-2053).
- 5. Even though daily simulations are carried out, the voltage at the terminal station is assumed to be fixed to a certain value, which will depend on the subtransmission network being studied.
- 6. Thermal assessments are for normal operational conditions (i.e., no contingency).
- 7. Some large loads (e.g., interconnection to another DNSP), which do not represent zone substations, are assumed to have the same peak load throughout the simulation (e.g., if the peak load of this large load is 50MVA, it will be repeated for every half hour of the day).
- 8. Any generator connected to the subtransmission networks are assumed always ON and with the generation set with the value received from WP 1.4 (e.g., if the generation given on the OpenDSS file is 2MVA, it will be repeated for every half hour of the day).
- Only peak demand days and shoulder days are considered in the impact assessment, while minimum demand days are out of the scope.
- 10. Battery storage is assumed to be unavailable in this study.
- 11. Any assumption made by WP 1.4 (distribution network models) and WP 1.5 (MV-LV network impact assessment) will also impact the results of this project. For their list of assumptions, please refer to their reports.

Whole-State Extrapolation Stage

- 1. The CBD MV feeder type is not considered in this project. This means that in the whole-state extrapolation any zone substation containing CDB MV feeder type was excluded from the studies.
- 2. For zone substations containing urban MV feeder type, it was assumed that half of these feeders are urban, while the other half are suburban.
- 3. For zone substations containing rural MV feeder type, it was assumed that half of these feeders are short rural, while the other half are long rural.
- 4. Power flow simulations are not performed at this stage. Instead, metrics calculated by WP1.5 for four representative MV feeder types are extrapolated to the state level using weighted averages based on the number and types of MV feeders connected to each zone substation.
- 5. Any assumption made by WP 1.4 (distribution network models) and WP 1.5 (MV-LV network impact assessment) will also impact the results of this project. For their list of assumptions, please refer to their reports.

1. Project Overview

This report corresponds to "Milestone 4: Final Report" of Work Package 1.6 (WP1.6) "Whole-State Network Impact Assessment". It will ultimately provide recommendations to Victorian Distribution Network Service Providers (DNSPs, aka distribution companies) about the subtransmission (i.e., 66kV line-to-line) network planning beyond 2030 as part of the Centre for New Energy Technologies (C4NET)'s Enhanced System Planning (ESP) project. This section presents the Victorian context in terms of the uptake of Distributed Energy Resources (DERs), the challenges it brings to distribution networks along with the objectives of WP1.6.

The Victorian Context

Hundreds of thousands of Australians (including Victorians) are embracing the use of DERs – seizing the opportunity to generate, store, manage or sell their own energy. These DERs include rooftop solar photovoltaics (PVs), electric vehicles (EVs), residential batteries as well as gas electrification (e.g., heat pumps). As shown in Figure 1, which is based on AEMO's forecast of DER installed capacity by 2050¹, solar PVs will continue to be the prominent DER technology adopted in Australia. Additionally, while the uptake of batteries will also rise steadily, it will not grow as rapidly as solar PV. However, EVs is the highlight of the forecast since they are expected to become a major DER in the coming years, surpassing the installed capacity of both solar PV and batteries.

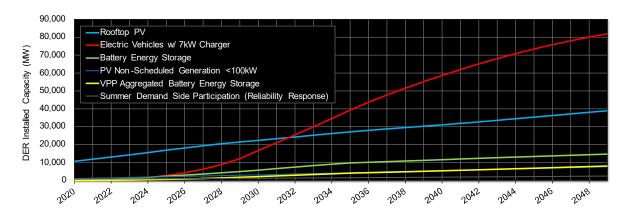


Figure 1. DER Installed Capacity Forecast².

In the context of Victoria, according to the State Government's vision³, 1 in 3 households will have solar PVs installed by 2025, which can deliver up to 60% of our energy demand at times. Additionally, a total of 740MWh of residential batteries will be available by 2025, which is equivalent to the capacity

¹ AEMO. "2022 ISP Inputs, Assumptions and Scenarios." https://aemo.com.au/en/energy-systems/major-publications/integrated-system-plan-isp/2022-integrated-system-plan-isp/2022-isp-inputs-assumptions-and-scenarios

² L. N. Ochoa, A. G. Givisiez, D. Jaglal, M. Z. Liu, and W. Nacmanson, "CSIRO Australian Research Planning forGlobal Power Systems Transformation: Topic 8 "Distributed Energy Resources"," The University of Melbourne, 2021.

³ L. The State of Victoria Department of Environment, Water and Planning,, "Harnessing Victoria's Distributed Energy Resources," 2022.

of 25 Ballarat Energy Storage Systems⁴. Furthermore, 50% of all new light-duty vehicle sales are projected to be EVs by 2030. Moreover, a gas substitution roadmap was released in 2022 to speed up the home electrification. This rapid uptake of various DER technologies simultaneously is expected to help Victoria in achieving its legislative renewable energy targets of 40% by 2025, 50% by 2030, and the ultimate goal of reaching net-zero emissions by 2050.

From the technical perspective, the combination of all these new DERs being added to the lower voltage levels of distribution networks is expected to considerably change the demand profiles on Medium-Voltage (MV) feeders (e.g., 22kV). Inevitably, this change on demand profiles on lower voltage levels will be reflected in subtransmission networks. This could make parts of the subtransmission network reach its thermal limits during normal operational conditions (i.e., no contingency), or even create voltage issues. In fact, according to the forecast daily load profile on minimum demand day from the Victorian Annual Planning Report⁵, shown in Figure 2, a significant increase in both the reverse power flow during midday (11am-1pm) and peak demand during the night (6pm-8pm) is expected in Victoria from the massive PV generation and EV demand, respectively. This forecast makes clear that DERs are bringing big challenges for DNSPs to deal with. However, these challenges can be potentially further exacerbated by the initiative of gas electrification in Victoria that will result in increased electricity demand, which requires further investigation for the network impacts.

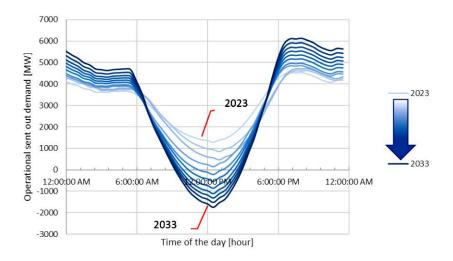


Figure 2. Victorian Daily Load Profile Forecast (2023-33) - Minimum Demand Day⁵.

Consequently, to accommodate more DERs within Victorian distribution networks, it is critical for DNSPs to understand the potential challenges posed by different scenarios (i.e., mix of DER technologies and different penetrations) in the current electrical infrastructure of the whole state, considering both subtransmission and MV-LV networks.

⁵ AEMO Victorian Planning, "Victorian Annual Planning Report," 2023.

12

⁴ AusNet Services, "Ballarat Battery Energy Storage System," 2021.

Scope and Objectives

WP1.6 "Whole-State Network Impact Assessment" is a key component of C4NET's Enhanced System Planning project. Its scope is to assess the impacts of electrification on Victorian subtransmission networks (66kV line-to-line), utilizing data provided by Work Packages 1.1 to 1.5 as inputs. The study analyses various scenarios incorporating different mixes of Distributed Energy Resources (DERs), including Electric Vehicles (EVs) and residential gas electrification.

The primary objectives are to conduct comprehensive impact assessments of electrification trends on the subtransmission network performance between 2023 and 2053, identify potential infrastructure limitations, and formulate strategic recommendations for Victorian Distribution Network Service Providers (DNSPs). These recommendations aim to guide the planning of subtransmission network as well as MV-LV networks, support DER adoption, and align with Victoria's net-zero emissions goals.

Ultimately, WP1.6 seeks to provide actionable insights that will help DNSPs make their subtransmission and MV-LV networks ready for a future characterized by increased electrification and diverse DER integration, supporting Victoria's transition to a low-carbon energy system.

2. Methodology

This section presents the full methodology for the impact assessment of electrification on the whole state of Victoria, which is done in two stages: the Impact Assessment and the Whole-State Extrapolation. Within the Impact Assessment stage, power flow simulations are carried out on the subtransmission networks modelled by WP1.4 (including improvements made by this work package when necessary) considering the aggregated demand profiles produced by WP1.5. Within the Whole-State Extrapolation stage, the impact metrics from WP1.5 are extrapolated to the whole state of Victoria using only limited information associated with zone substations.

Detailed explanations for the two stages are presented in the subsections below.

Impact Assessment Stage

The Impact Assessment stage relies on detailed models of the subtransmission network, along with demand data for zone substations (ZSSs), demand profiles for non-ZSS loads, and generation profiles of network-connected generators to conduct comprehensive power flow simulations. An overview of the Impact Assessment stage is given in Figure 3, and detailed explanation of input data and steps are provided next.

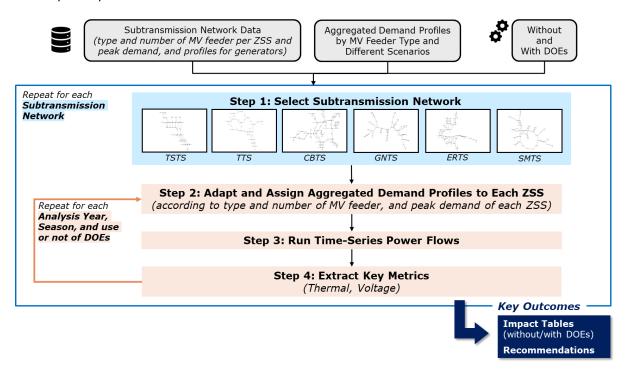


Figure 3. Overview on the Impact Assessment stage.

This assessment approach requires the following input data.

Subtransmission Network

The subtransmission network data includes network models, information on the type and number of MV feeders connected to each ZSS along with their corresponding peak demand, and the active and reactive power values at the peak demand snapshot for non-ZSS loads and generators connected to the subtransmission networks.

Six subtransmission network models were created by WP1.4 in OpenDSS from the original DNSPs' network data (modelled in PSSE). This work package improved four of these models (CBTS, ERTS, TSTS, and TTS) to better align with the original PSSE files. Consequently, this work package uses the four improved OpenDSS subtransmission network models and two (GNTS-MBTS and SMTS) directly from WP1.4. WP1.4 also provided the type and number of MV feeders connected to each ZSS and their corresponding peak demand.

Ideally, each non-ZSS load and generator connected to the subtransmission network would require a demand/generation profile. However, as these were not provided, this work package assumes that flat demand/generation profiles based on the values provided in the peak demand snapshot.

Demand Profiles by MV Feeder Type, Year, Seasons and Use of DOEs

WP 1.5 provided 24h aggregated demand profiles with 30-minute resolution for four types of MV feeders, three peak demand days, seven analysis years, and scenarios with and without Dynamic Operating Envelopes (DOEs). Examples of these aggregated demand profiles are illustrated in Figure 4 for active power and Figure 5 for reactive power.

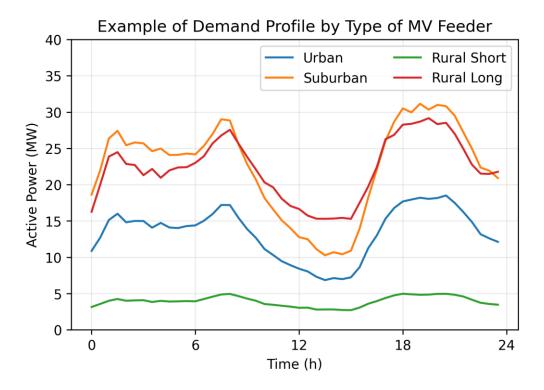


Figure 4. Example of active power demand profile for the four types of MV feeders without DOEs.

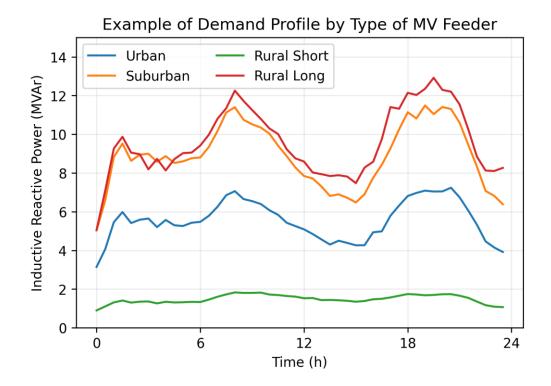


Figure 5. Example of reactive power demand profile for the four types of MV feeders without DOEs.

Once the input data is available, this assessment approach follows the steps below:

Step 1: Subtransmission Network Selection

This initial step involves selecting a specific subtransmission network and loading its OpenDSS model. The model is then prepared with demand data for the Zone Substations (ZSS) to enable power flow simulations in step 4.

Step 2: Assign and Adapt Net Demand Profiles to Each ZSS

Considering the demand profiles for the for four types of MV feeders, three peak demand days, seven analysis years, and scenarios with and without DOEs, and using the type and number of MV feeders connected to each ZSS, this step builds an initial demand profile for each ZSS by summing the relevant MV feeder profiles. For example, if a ZSS has two urban MV feeders (which profile is shown in Figure 4), their sum creates the initial ZSS demand profile for a given day and year without DOEs (orange line in Figure 6).

Then, using the known original peak demand for each ZSS, the initial ZSS demand profiles are adapted to match the corresponding peak demands, ensuring accurate representation of loading conditions. For instance, if a ZSS has the original peak active power demand of 27 MW, but its initial demand profile peaks at 17 MW, 10 MW is added to each time step of the initial profile (illustrated in Figure 6).

This process is repeated for every ZSS of the selected subtransmission network, and it is done for both active and reactive power.

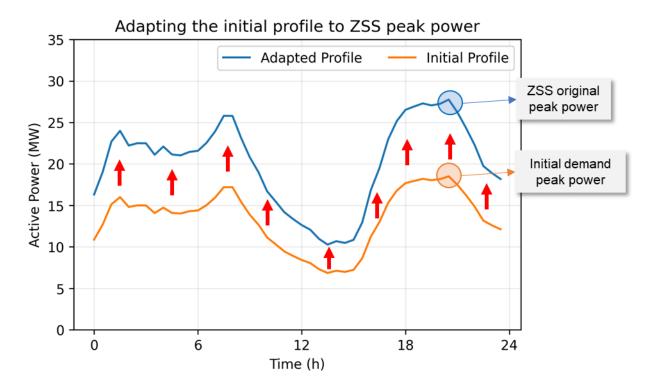


Figure 6. Illustration of the adaptation of the initial ZSS profile to its peak power.

Step 3: Run Time-Series Power Flows

Using the subtransmission network model (from step 1), the adjusted ZSS demand profiles (from step 2), and the profiles of non-ZSS loads and generators directly connected to the subtransmission network, OpenDSS is configured to run time-series power flows. The simulation results are then recorded for further analysis. It's important to note that all loads in this process are considered balanced.

Step 4: Extract Key Metrics

The impact assessment considers the following key metrics, among others:

Transformer Utilization

The total apparent power (MVA) passing through the transformer divided by its rated capacity. This is done for every transformer of the subtransmission network, considering ZSSs and terminal stations (when data is available). The following criteria is used to classify the different loading conditions:

- Ideal load: below 100%
- Acceptable overload: between 100% and 110%
- Significant overload: between 110% and 150%
- Extreme overload: above 150%

Line Utilization

The total apparent power (MVA) passing through the line divided by its rated capacity. This is done for every line (when data is available) of the subtransmission network. The following criteria is used to classify the different loading conditions:

- Ideal load: below 100%
- Acceptable overload: between 100% and 110%
- Significant overload: between 110% and 150%
- Extreme overload: above 150%

Voltages

The voltage in per unit for every bus of the subtransmission network. The main voltage levels considered are of 220kV, 66kV, and 22kV, depending on the subtransmission network being studied. The Electricity Distribution Code of Practice⁶ is used to assess voltages, as follow.

For 220kV and 66kV areas:

- Good: between 0.9 pu and 1.1 pu
- Concerning: below 0.9 pu or above 1.1 pu

For 22kV and 6.6kV areas:

- Good: between 0.94 pu and 1.06 pu
- Concerning: below 0.94 pu or above 1.06 pu

For areas below 1kV:

- Good: between 0.94 pu and 1.1 pu
- Concerning: below 0.94 pu or above 1.1 pu

Step 4 uses the recorded time-series power flow results to extract metrics related to the utilisation of transformers and lines, and voltages at all buses of the network.

Once these metrics are calculated, the impact assessment is carried out (following the metrics definition aforementioned) and a summary table (the impact tables) is created. This impact tables can be used by DNSPs as a guide for their planning considering the electrification of loads.

Finally, from the impact assessment, it is possible to know which lines or transformers are passing the limits and by how much (e.g., MVA). Thus, it is possible to create high-level recommendations on the needed augmentation for ZSSs and lines for each day, analysis year, and scenario. These suggested solutions can be used by DNSPs as a guide for their planning considering the electrification of loads.

Note that all these analyses and results are done for the scenario with DOEs and without them.

⁶ Electricity Distribution Code of Practice, Essential Service Commission, Version 2, May 2023

Whole-State Extrapolation Stage

The Whole-State Extrapolation stage relies on the impact metrics from WP1.5 to extrapolate the impact assessment to the whole state of Victoria using only limited information associated with zone substations. An overview of the Extrapolation stage is given in Figure 7, and detailed explanation of input data and steps are provided next.

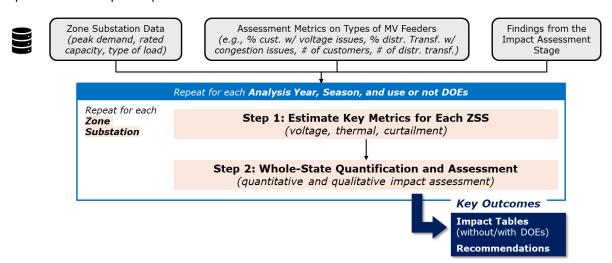


Figure 7. Overview of the Whole-State Extrapolation stage.

This assessment approach requires the following input data.

Zone Substation Data

Victorian DNSPs provided key info about all their ZSSs, which is used to extrapolate the impact assessment to the entire state. These data are ZSSs peak demand, rated capacity, and quantity and type of MV feeder, which are exemplified in Table 1.

	Name of ZSS 1		Name of ZSS 2					
Peak Demand (MW)	Rated Capacity (MVA)	Quantity and Type of MV Feeder	Peak Demand (MW)	Rated Capacity (MW)	Quantity and Type of MV Feeder			
92	150	1 urban	58	100	5 rural-short			

Table 1. Example of zone substation data received from DNSPs

Assessment Metrics on Types of MV Feeders

WP1.5 provided multiple assessment metrics for four types of MV feeders, three peak demand days, seven analysis years, and scenarios with and without DOEs, which is used to extrapolate the impact assessment to the entire state. Some of these metrics are presented in Table 2.

Step 1: Estimate Key Metrics for Each ZSS

In this step, and extrapolation of the impact assessment metrics from WP1.5 for each type of MV feeder (Table 2) is carried out to the whole state of Victoria, using ZSS data provided by DNSPs (Table 1). This extrapolation employs simple weighted averages to correlate the assessment metrics from WP1.5 with the key ZSS data from DNSPs.

Table 2. Example of the assessment metrics from WP 1.5.

		2023							
Metrics	MV Feeder Type								
Menics	CBD	Urban	Suburban	Short-Rural	Long-Rural				
Peak Demand (MW)	48	58	58	9	58				
Number of Customers	1,001	2,536	10,678	3,378	8,691				
Number of Distribution Transformers	12	10	52	24	133				
Feeder Length (km)	4	5	13	18	55				
Customers w/ Voltage Issues (%)	0%	10%	12%	15%	20%				
Distr. Transf. w/ Congestion Issues (%)	0%	5%	3%	2%	1%				
Lines w/ Congestion Issues (%)	0%	5%	3%	2%	1%				
Customers w/ PV Curtailment (%)	0%	10%	12%	15%	20%				
Yearlong Curtailed per Customers (MW)	0	2	2	3	4				

Once the input data is available, this assessment approach follows the steps below:

For example, consider ZSS 1, which has 1 urban MV feeder connected to it (Table 1). To estimate the number of customers with voltage issues in ZSS 1, it is first needed to estimate the number of customers connected to ZSS 1, then multiply the estimated number of customers by the percentage of customers with voltage issues in urban MV feeders (Table 2). In turn, to estimate the number of customers in ZSS 1, the number of customers in urban MV feeders, which is 2,536 (Table 2), is divided by the corresponding peak demand, which is 58 MW (Table 2), then, the result is multiplied by the peak demand at ZSS 1, which is 92 MW (Table 1), resulting in 4,023 customers connected to ZSS 1 (Table 3). Finally, the estimated number of customers connected to ZSS 1, which is 4,023, is multiplied by the percentage of customers with voltage issues in urban MV feeders, which is 10% (Table 2), resulting in 402 customers with voltage problems in ZSS 1 (Table 3). This process is repeated for every assessment metric given in Table 2. A full example of this estimation for ZSS 1 and ZSS 2 is given in Table 3.

Step 2: Whole-State Quantification and Assessment

The assessment metrics estimated for each ZSS (step 1) can be used to quantify the impact assessment in the entire state of Victoria. Thus, the whole-state impact assessment is carried out and a summary table (the impact tables) is created. This impact tables can be used by DNSPs as a guide for their planning considering the electrification of loads.

In addition, using the quantified Whole-State Extrapolation metrics together with learnings from WP1.5 and from the Impact Assessment stage, it is possible to carry out a qualitative analysis so to create high-level recommendations for each analysis year and scenario. These recommendations can be used by DNSPs as a guide for their planning considering the electrification of loads.

Table 3.Example for the extrapolation of MV feeders' metrics to ZSSs

Example of Extrapolation									
Estimated Metrics	Name of ZSS 1	Name of ZSS 2							
Number of Customers	4,023	2,627							
Number of Distr. Transf.	16	19							
Feeder Length (km)	7.93	14.00							
Number of Customers w/ Voltage Issues	402	394							
Distr. Transf. w/ Congestion Issues	2	3							
Lines w/ congestion Issues (km)	0.397	0.280							
Number of Customers w/ PV Curtailment	402	394							
Yearlong Curtailment per Customer (MW)	8,045	7,882							

Note that all these analyses and results are carried out for the scenarios with and without DOEs.

3. Project Results

This section presents and assesses the results of our two-stage study: "Impact Assessment " and "Whole-State Extrapolation". The Impact Assessment stage evaluates 6 Victorian subtransmission networks (66kV) using power flow simulations to assess their performance under increased load electrification. The Whole-State Extrapolation stage assess MV-LV networks (22kV-0.4kV) across Victoria by extrapolating from representative MV feeder types, using metrics provided by WP1.5. Both stages evaluate two scenarios: a baseline without DOEs, and one with DOEs adoption for residential customers. By analysing these two stages and scenarios, we provide a comprehensive evaluation of potential network voltage and thermal challenges at different voltage levels and assess the effectiveness of DOEs in mitigating these issues across Victoria's distribution networks. The DOEs scenarios are the following.

- Without DOE: In this scenario, PV inverter functions (Volt-Watt and Volt-Var, following AS/NZS4777.2:2020 Australia A settings) are enabled, but DOEs are not implemented.
- With DOE: In this scenario, PV inverter functions are still enabled, and DOEs are implemented based on the following adoption rates:
 - ✓ Export OE (and upgrade to 10kVA PV inverter)
 - o 2028 apply to new PV customers.
 - o 2033 apply to 50% of existing PV customers.
 - 2038 apply to 100% of existing PV customers.
 - ✓ Import OE
 - o 2033 apply to new EV customers.
 - o 2038 apply to 100% of existing EV customers.
 - o Only EV demand will be managed

Impact Assessment (Without DOEs)

This section presents the results of the electrification impact assessment on the 6 Victorian subtransmission networks (66kV) without the use of DOEs by residential customers. To complement the analysis, an assessment of MV-LV networks connected to each subtransmission network's ZSSs is presented, using extrapolated metrics from WP1.5. This approach provides a comprehensive view of effects of the increasing load electrification across different network levels.

Before the results, it is essential to understand the key assumptions and limitations of this study:

- 1. <u>Network Models</u>: Subtransmission networks are assumed to remain the same throughout the assessment period (2023-2053), i.e., network augmentation or planned connections/expansions are not considered in this study.
- 2. <u>Voltage at Terminal Stations</u>: Voltage at terminal stations is set to a fixed value, which is specified individually for each subtransmission network.

- 3. Operational Conditions: Capacitor banks and On Load Tap Changers (OLTCs) are operated as needed to keep voltages within the required limits.
- 4. Thermal Limits: Thermal assessments are conducted for normal operational ratings.
- 5. <u>Large Loads</u>: Certain large loads, such as interconnections to other DNSPs, are assumed to maintain a constant load (as per the received models) throughout the simulated days.
- 6. <u>Generation</u>: Any generator connected to the subtransmission network is assumed to be continuously operating, with generation levels set according to the data received from WP1.4.
- 7. <u>Network Model Simplifications</u>: Subtransmission network models received from WP1.4 have simplifications transformers and OLTCs of terminal stations were not modelled that will affect the ability to manage voltages in the 66kV level.

Given these assumptions and limitations, it is crucial to interpret all results within this context.

CBTS Subtransmission Network

Cranbourne Terminal Station (CBTS) supplies a 66kV subtransmission network loop that spans from Narre Warren in the north to Clyde in the south, and from Pakenham in the east to Carrum and Frankston in the west. The electricity distribution networks for this area are the responsibility of both AusNet Electricity Services (61%) and United Energy (39%). With an operational capacity of 553 MVA and a 2023 peak load of 482 MVA, CBTS supplies over 100,000 customers through 7 zone substations (ZSSs).

As shown in Table 4, the results indicate that this network may experience the following technical issued during the analysis period (if no network augmentation or planned connections/expansions are considered):

- The <u>terminal station</u> is expected to face minor <u>overload</u> by 2033, escalating to a significant overload by 2038. Low power factor will start being an issue by 2048.
- The <u>subtransmission network</u> is expected to face <u>voltage drop issues</u> at the 66kV level by 2043, which escalates in the subsequent years.
- Some <u>ZSS transformers</u> reach unacceptable <u>overload</u> levels by 2033, which escalates in the subsequent years.
- Some <u>subtransmission lines</u> (66kV) reach unacceptable <u>overload</u> levels by 2038, which escalates in the subsequent years.
- The MV-LV networks connected to the CBTS subtransmission loop face minor voltage issues from 2023, escalating to moderate by 2028 and severe after 2033.
- The MV-LV networks connected to the CBTS subtransmission loop face minor overload on several distribution transformers in 2028, affecting 14% of distribution transformers by 2033 and a guarter by 2038.

Table 4. Impact assessment for the CBTS subtransmission network without DOEs.

		Subtransmissior (Withou	n Network ut DOEs)	c – CBTS					
	Year	2023	2028	2033	2038	2043	2048	2053	
	Те	rminal Station Assessme	nt (model	-based s	imulatio	ns)			
Maximun	Maximum Demand at Terminal Station (MVA)			543	625	732	861	1027	1145
Increase of I	Max. Demand at T	erminal Station (MVA)	-	12%	15%	17%	18%	19%	11%
Power Facto		tion for Max. Demand	0.98	0.98	0.96	0.94	0.91	0.85	0.8
		HV Voltage Assessment			,				
% of	Buses with Volta	ge Rise Issues	0%	0%	0%	0%	0%	0%	0%
% of	Buses with Volta	ge Drop Issues	0%	0%	0%	0%	37%	42%	63%
	Maximum Volta	age (pu)	1.06	1.06	1.06	1.06	1.06	1.06	1.06
	Minimum Volta	age (pu)	0.97	0.96	0.93	0.90	0.84	0.75	0.67
		HV Thermal Assessment	(model-b	ased sim	ulations)			
		<= 100%	83%	75%	8%	8%	8%	8%	8%
	% of Transformers with Maximum Utilisation	100%-110%	17%	8%	50%	0%	0%	0%	0%
		Avg. Overloading Duration (hr)	1.5	5	2.2	0	0	0	0
HV		110%-150%	0%	17%	42%	58%	42%	0%	0%
Transformers		Avg. Overloading Duration (hr)	0	2.5	5.5	5.9	9.7	0	0
		> 150%	0%	0%	0%	33%	50%	92%	92%
		Avg. Overloading Duration (hr)	0	0	0	2.6	6.2	8.4	10.7
	Max. U Worst Perf	106%	119%	138%	158%	195%	219%	228%	
		<= 100%	100%	100%	85%	77%	38%	38%	38%
		100%-110%	0%	0%	0%	0%	15%	0%	0%
	% of Lines	Avg. Overloading Duration (hr)	0	0	0	0	1.8	0	0
10/15	with Maximum	110%-150%	0%	0%	15%	23%	31%	31%	0%
HV Lines	Utilisation	Avg. Overloading Duration (hr)	0	0	3.3	7.2	4.9	6.6	0
		> 150%	0%	0%	0%	0%	15%	31%	62%
		Avg. Overloading Duration (hr)	0	0	0	0	7	9.8	8.6
Max. Utilisation of t Worst Performing L			82%	98%	119%	148%	187%	245%	280%
	MV-LV Voltage Assessme			olation c	f metric:	s)			
Residential Voltage Rise Non-Compliance		0%	2%	6%	9%	12%	14%	18%	
Resider	ntial Voltage Drop	Non-Compliance	2%	5.3%	10%	14%	18%	23%	27%
% of LV	Networks with Vo	oltage Rise Issues	1%	9%	15%	18%	19%	21%	22%
% of LV	Networks with Vo	oltage Drop Issues	9%	17%	20%	23%	28%	33%	39%
% of LV Networks with Both Voltage Rise & Drop Issues		1%	9%	15%	18%	19%	21%	22%	

	MV-LV Thermal Assessme				of metric	s)			
% of Distribution Transformers with Maximum Utilisation		<= 100%	100%	97%	86%	75%	70%	64%	62%
		100%-110%	0.1%	2%	5%	4%	3%	3%	2%
		110%-150%	0.3%	0.5%	8%	16%	14%	10%	10%
		> 150%	0%	0.3%	0.8%	5%	14%	23%	26%
		PV Curtailment Assessmer	nt (extrap	olation o	of metric	s)			
9	6 of PV Custome	rs Curtailed	100%	100%	100%	100%	100%	100%	100%
Aggregate	Total PV	Curtailment (GWh)	15	29	45	70	86	114	142
	% of	PV Curtailment	6%	9%	12%	15%	18%	21%	24%

Considerable aggregate <u>PV curtailment</u> occurs from 2028 (9%), constantly increasing around 3% every year.

Detailed analysis is provided below.

Terminal Station Assessment

By 2033, Cranbourne terminal station is expected to exceed its normal operational limit by up to 13% during the worst day (winter peak) and remain above 100% utilization for 6h, which should be manageable. However, in 2038, CBTS is expected to experience considerable overload, reaching up to 32% above capacity and operating over 100% for at least 14h during the worst day (winter peak). This overload is expected to intensify in subsequent years, reaching extreme levels in 2053 with up to 207% overload and staying below 100% for only 4h on the worst day (winter peak). Additionally, the terminal station is expected to face power factors below the code requirements of 0.9 from 2048, with this issue worsening over subsequent years.

- In 2038, overload occurs in the early morning hours (1am-6am), intensifies during peak
 morning hours (6am-9am), subsides in the late morning and afternoon, and resurges during
 the peak evening hours (5pm-10pm). In subsequent years, the period with loads below 100%
 shrinks drastically, from 9h in 2038 to only 4h in 2053.
- This increasing overload is primarily driven by residential adoption of electrified heating/cooling systems and EVs. From 2023 to 2038, demand surges approximately 4-fold in early mornings and 2.5-fold during peak hours. By 2053, the increase intensifies further, with loads rising around 7-fold in early mornings and 4-fold during peak hours compared to 2023.
- Note that these calculations assume CBTS and its corresponding subtransmission loop to be isolated from the rest of the grid, disregarding potential interconnections that could be used to alleviate loading.
- Also note that this terminal station model is simplified and does not include capacitor banks,
 which are likely available in reality, meaning that the power factor could be better managed.

Subtransmission Voltage Assessment

By 2043, approximately 37% of the buses may experience undervoltage issues, falling below the code requirement of 0.9 pu for 66kV, during peak periods (both morning and evening) of the worst day (winter peak). This trend persists in subsequent years, with low voltage issues intensifying over time and extending to the early morning hours as well.

- In 2048, all 7 buses experiencing undervoltage issues are on the 66kV network. While the 22kV (secondary of ZSSs) are within the required limits due to the use of capacitor banks and OLTCs at ZSSs.
- These low voltages result from expected high demands driven by residential adoption of electrified heating/cooling systems and EVs.
- Note that the terminal station is assumed to provide fixed voltages at 1.01 pu (as per received model), with its transformers not being modelled. If CBTS transformers were modelled, their OLTCs could potentially mitigate this voltage drop issues on the subtransmission network.

Subtransmission Thermal Assessment

Since the base year (2023), 17% (2) of ZSS transformers already face acceptable overload. This issue is expected to escalate rapidly if network augmentation is not considered, reaching unacceptable levels by 2033. While 66kV lines are expected to remain robust enough to accommodate the increasing demand until 2033.

- By 2033, 42% (5) of ZSS transformers are expected to face significant overload (110%-150%) during peak hours for an average of 5.5h. Only 8% (1) of ZSS transformers are expected to remain within capacity limits (below 100%) throughout the entire day. The situation deteriorates in subsequent years, with 92% (11) of ZSS transformers expected to experience extreme overutilization (>150%) by 2053, reaching up to 228% utilization.
- By 2033, 15% (2) of 66kV lines are expected to face significant overload (110%-150%) during peak hours for an average of 3.3h, which may still be manageable as the peak overload is around 119%. However, by 2038, 23% (3) of 66kV lines are expected to face significant overload for an average of 7.2h, becoming unmanageable with peak overutilization around 148% and extended duration. The situation deteriorates rapidly in subsequent years, with 62% (8) of 66kV lines expected to experience extreme overutilization (>150%) by 2053, reaching up to 280% utilization.
- In 2033, overload occurs during peak hours (both morning and evening) for both ZSS
 transformers and 66kV lines. By 2038, it expands to include early morning hours (1am-6am)
 and intensifies peak hours. In subsequent years, the overload extends into part of the
 afternoon, while further intensifying in the early morning and peak hours.

MV-LV Voltage Assessment

By 2028, the MV-LV networks connected to the CBTS subtransmission loop reaches 33% PV penetration, triggering moderate voltage issues that starts limiting further PV uptake.

- As voltage regulation devices in the MV-LV networks are operated to balance voltage
 headroom and footroom, more voltage drop issues emerge while managing PV-related
 voltage rise. This indicates that voltage regulation devices (i.e., tap positions) have reached
 their limits in maintaining customer voltages within both upper and lower boundaries.
- In 2028, of the estimated 96,092 residential customers, 2% (~1,922) are expected to face voltage rise issues and 5.3% (~5,093) voltage drop issues, slightly exceeding the code requirement that voltage non-compliance should remain below 5%.

From 2028 to 2038, the MV-LV networks experience heating electrification and a surge in EV uptake, from 14% to 86%, while PV uptake grows modestly, from 33% to 39%. Consequently, rising the net demand, which exacerbates voltage issues.

 More specifically, from 2028 to 2038, voltage rise non-compliance increases by 7% and voltage drop non-compliance by 9%. Again, voltage regulation devices (i.e. tap positions) reach their limits in maintaining customers voltages within both upper and lower boundaries. Consequently, efforts to address demand-related voltage drop issues further exacerbate voltage rise problems.

MV-LV Thermal Assessment

By 2028, only 3% (~298) of the distribution transformers in the MV-LV networks connected to the CBTS subtransmission loop experience overloading, with 2% (~198) facing minor overloading (100%-110%). However, without network augmentation, this issue can escalate rapidly in subsequent years.

Without network augmentation, by 2033, 14% (~1,389) of distribution transformers may be overloaded, with 8% (~794) facing significant (110%-150%) and 1% (~99) extreme (>150%) overloading. By 2038, overloaded transformers increase to 25% (~2,480), with 16% (~1,587) experiencing significant and 5% (~496) extreme overloading, potentially severely limiting further DER uptake.

PV Curtailment Assessment

In 2028, with 33% PV penetration, some PV customers may face significant curtailment due to network-wide voltage rise issues. Simulations assume residential PV systems have 5 kVA inverters, which can limit export opportunities and reduce overall renewable energy penetration across the MV-LV networks.

 All PV customers may experience varying degrees of curtailment. The aggregated PV curtailment increases dramatically from 15 GWh (6%) in 2023 to 142 GWh (24%) in 2053.

This curtailment is mainly due to the 5 kVA capacity limit of residential PV inverters, with further curtailment resulting from the PV Volt-Watt inverter function.

ERTS Subtransmission Network

East Rowville Terminal Station (ERTS) is the main supply of a 66kV subtransmission network that serves part of the outer south-eastern corridor of Melbourne. It spans from Scoresby in the north to Lyndhurst in the south, and from Belgrave in the east to Mulgrave in the west. The electricity supply network for this large region is split between United Energy (74%) and AusNet Electricity Services (26%). With an operational capacity of 680 MVA and a 2023 peak load of 436 MVA, ERTS supplies power to at least 7 zone substations (ZSSs).

As shown in Table 5, the results indicate that this network may experience the following technical issued during the analysis period (if no network augmentation or planned connections/expansions are considered):

- The <u>terminal station</u> is expected to face significant <u>overload</u> by 2033, which escalates in the subsequent years. <u>Low power factor</u> will start being an issue by 2038.
- The <u>subtransmission network</u> is expected to face <u>voltage drop issues</u> at the 66kV level by 2048, which escalates in the subsequent years.
- Some <u>ZSS transformers</u> reach unacceptable <u>overload</u> levels by 2033, which escalates in the subsequent years.
- Some <u>subtransmission lines</u> (66kV) reach unacceptable <u>overload</u> levels by 2038, which escalates in the subsequent years.
- The MV-LV networks connected to the ERTS subtransmission network face minor voltage issues by 2028, escalating to significant by 2033, and worsening in the subsequent years.
- The <u>MV-LV networks</u> connected to the ERTS subtransmission network face minor <u>overload</u> on several <u>distribution transformers</u> in 2028, reaching 18% of distribution transformers by 2033, a third by 2038, and worsening in the subsequent years.
- Considerable aggregate <u>PV curtailment</u> occurs from 2028 (9%), constantly increasing around 3% every year.

Detailed analysis is provided below.

Terminal Station Assessment

By 2033, East Rowville terminal station is expected to exceed its normal operational limit by up to 33% during the worst day (winter peak) and stay above 100% utilization for 8h, which can be considered a severe overload. This overload is expected to intensify in subsequent years, reaching extreme levels by 2053 with up to 345% overload and continuous overutilization for nearly 24h. Additionally, the terminal station is expected to face power factors below the code requirements of 0.9 from 2038, with this issue worsening over subsequent years.

Table 5. Impact assessment for the ERTS subtransmission network without DOEs.

		Subtransmission (Withou	n Network ut DOEs)	– ERTS					
	Year		2023	2028	2033	2038	2043	2048	2053
	Te	rminal Station Assessme	nt (model	-based s	imulatio	ns)			
Maximur	Maximum Demand at Terminal Station (MVA)			653	906	1254	1631	2049	2350
Increase of	Max. Demand at T	erminal Station (MVA)	-	30%	39%	38%	30%	26%	15%
Power Fact	or at Terminal Sta	tion for Max. Demand	1.00	0.97	0.91	0.83	0.77	0.69	0.64
		HV Voltage Assessment							
	Buses with Voltage		0%	0%	0%	0%	0%	0%	0%
% of	Buses with Voltage	ge Drop Issues	0%	0%	0%	0%	0%	26%	43%
	Maximum Volta	ige (pu)	1.06	1.08	1.08	1.08	1.08	1.08	1.08
	Minimum Volta	· /	0.98	0.98	0.98	0.97	0.94	0.75	0.71
		HV Thermal Assessment	(model-ba	ased sim	ulations)			
		<= 100%	88%	88%	65%	47%	47%	47%	47%
	% of Transformers with Maximum Utilisation	100%-110%	12%	0%	12%	6%	0%	0%	0%
		Avg. Overloading Duration (hr)	3	0	3.3	4	0	0	0
HV Transformer		110%-150%	0%	12%	12%	24%	29%	0%	0%
ransformer s		Avg. Overloading Duration (hr)	0	5.5	5	6.6	13.5	0	0
		> 150%	0%	0%	12%	24%	24%	53%	53%
		Avg. Overloading Duration (hr)	0	0	4.5	6	13.9	10.2	14.2
	Max. U Worst Perfe	110%	150%	187%	282%	302%	307%	318%	
		<= 100%	100%	100%	94%	75%	75%	62%	44%
		100%-110%	0%	0%	6%	6%	0%	12%	12%
	% of Lines	Avg. Overloading Duration (hr)	0	0	4	2.5	0	1	0.5
HV Lines	with Maximum	110%-150%	0%	0%	0%	19%	12%	0%	19%
- HV Lines	Utilisation	Avg. Overloading Duration (hr)	0	0	0	5.8	6.8	0	1.2
		> 150%	0%	0%	0%	0%	12%	25%	25%
		Avg. Overloading Duration (hr)	0	0	0	0	4.3	9	12.1
Max. Utilisation of the Worst Performing Line		tilisation of the	66%	81%	108%	133%	168%	205%	241%
	MV-LV Voltage Assessmer				f metric:	s)			
Residential Voltage Rise Non-Compliance		0%	1%	3%	5.3%	9%	12%	14%	
Reside	Residential Voltage Drop Non-Compliance		1%	3%	9%	14%	19%	23%	26%
% of LV	Networks with Vo	oltage Rise Issues	1%	12%	20%	24%	26%	28%	28%
% of LV	Networks with Vo	Itage Drop Issues	12%	22%	26%	30%	34%	41%	45%
% of LV Netwo	orks with Both Vol	% of LV Networks with Both Voltage Rise & Drop Issues		12%	20%	24%	25%	28%	28%

	ı	MV-LV Thermal Assessmer	nt (extrap	olation o	of metric	s)			
% of Distribution Transformers with Maximum Utilisation		<= 100%	100%	97%	82%	67%	61%	56%	54%
		100%-110%	0%	3%	7%	4%	4%	3%	2%
		110%-150%	0.2%	0.2%	11%	22%	17%	11%	11%
		> 150%	0%	0.2%	0.3%	6%	18%	30%	33%
		PV Curtailment Assessmer	ıt (extrap	olation c	of metric:	s)			
9	% of PV Custome	rs Curtailed	100%	100%	100%	100%	100%	100%	100%
Aggregate Export	Total PV	Curtailment (GWh)	28	55	84	120	163	216	268
	% of	PV Curtailment	6%	9%	12%	15%	18%	21%	24%

- In 2033, overload occurs for nearly 3h during peak morning hours (6am-9am) and 5h during peak evening hours (5pm-10pm). By 2038, overloading extends to early mornings (1am-6am), while intensifying during peak hours. In subsequent years, it progressively spreads to late morning and afternoon periods, ultimately reaching near 24h overload by 2053.
- This increasing overload is primarily driven by residential adoption of electrified heating/cooling systems and EVs. From 2023 to 2038, demand surges 4-fold in early mornings and 2.5-fold during peak hours. By 2053, the increase intensifies further, with loads rising 7-fold in early mornings and 4-fold during peak hours compared to 2023.
- Note that these calculations assume ERTS and its corresponding subtransmission loop to be isolated from the rest of the grid, disregarding potential interconnections that could be used to alleviate loading.

Subtransmission Voltage Assessment

By 2048, approximately 26% of the buses may experience undervoltage issues, falling below the code requirement of 0.9 pu for 66kV and/or below 0.94 pu for 22kV, mainly during peak periods (both morning and evening) of the worst day (winter peak). This trend persists in subsequent years, with low voltage issues intensifying over time and extending to the early morning hours as well.

- In 2048, five out of six buses experiencing undervoltage issues are on the 66kV network, with
 one on the 22kV (secondary of ZSSs). This indicates that both terminal station and ZSSs
 OLTCs, as well as capacitor banks, have reached their operational limits in maintaining
 voltage levels.
- These low voltages result from expected high demands driven by residential adoption of electrified heating/cooling systems and EVs.
- Note that the primary side (220kV) of the terminal station is assumed to provide fixed voltages at 1.036 pu, as per received model.

Subtransmission Thermal Assessment

Since the base year (2023), 12% (1) of ZSS transformers already face acceptable overload. This issue is expected to escalate rapidly if network augmentation is not considered, reaching unacceptable levels by 2033. While 66kV lines are expected to remain robust enough to accommodate the increasing demand until 2038.

- By 2033, 12% (1) of ZSS transformers are expected to face extreme overload (>150%) during peak hours for an average of 4.5h, while another 12% (1) are expected to experience significant overload (110%-150%) for an average of 5h. The situation worsen in subsequent years, with 53% (6) of ZSS transformers expected to undergo extreme overutilization (>150%) by 2053, reaching up to 318% utilization.
- By 2038, 19% (3) of 66kV lines are expected to face significant overload (110%-150%) during peak hours for an average of 5.8h, which is likely to be unmanageable with peak overutilization around 133% and extended duration. The situation deteriorates rapidly in subsequent years, with 25% (5) of 66kV lines expected to experience extreme overutilization (>150%) by 2053, reaching up to 241% utilization.
- In 2033, overload occurs during peak hours (both morning and evening) for both ZSS
 transformers and 66kV lines. By 2038, it expands to include early morning hours (1am-6am)
 and intensifies peak hours. In subsequent years, the overload extends into the afternoon,
 while further intensifying in the early morning and peak hours.

MV-LV Voltage Assessment

By 2028, the MV-LV networks connected to the ERTS subtransmission loop reaches 33% PV penetration, triggering minor voltage issues that start limiting further PV uptake.

- As voltage regulation devices in the MV-LV networks are operated to balance voltage
 headroom and footroom, more voltage drop issues emerge while managing PV-related
 voltage rise. This indicates that voltage regulation devices (i.e., tap positions) have reached
 their limits in maintaining customer voltages within both upper and lower boundaries.
- In 2028, of the estimated 117,999 residential customers, 1% (~1,180) are expected to face voltage rise issues and 3% (~3,540) voltage drop issues, which still does not exceed the code requirement that voltage non-compliance should remain below 5%.

From 2028 to 2033, the MV-LV networks experience heating electrification and a surge in EV uptake, from 14% to 50%, while PV uptake grows modestly, from 33% to 36%. Consequently, rising the net demand, which exacerbates voltage issues.

 More specifically, from 2028 to 2033, voltage rise non-compliance increases by 2% and voltage drop non-compliance by 6%, bringing the voltage non-compliance outside the code requirements. Again, voltage regulation devices (i.e. tap positions) reach their limits in

maintaining customer voltages within both upper and lower boundaries. Consequently, efforts to address demand-related voltage drop issues further exacerbate voltage rise problems.

MV-LV Thermal Assessment

By 2028, only 3% (~124) of the distribution transformers in the MV-LV networks connected to the ERTS subtransmission network experience minor overload (100%-110%). However, without network augmentation, this issue can escalate rapidly in subsequent years.

Without network augmentation, by 2033, 18% (~744) of distribution transformers may be overloaded, with 11% (~455) facing significant (110%-150%) and 0.3% (~12) extreme (>150%) overload. By 2038, overloaded transformers increase to 33% (~1,365), with 22% (~910) experiencing significant and 6% (~248) extreme overload, which would severely limit further DER uptake.

PV Curtailment Assessment

In 2028, with 33% PV penetration, some PV customers may face curtailment due to network-wide voltage rise issues. Simulations assume residential PV systems have 5 kVA inverters, which can limit export opportunities and reduce overall renewable energy penetration across the MV-LV networks.

All PV customers may experience varying degrees of curtailment. The aggregated PV curtailment increases dramatically from 28 GWh (6%) in 2023 to 268 GWh (24%) in 2053.
 This curtailment is mainly due to the 5 kVA capacity limit of residential PV inverters, with further curtailment resulting from the PV Volt-Watt inverter function.

GNTS-MBTS Subtransmission Network

Glenrowan Terminal Station (GNTS) is the main supply of a 66kV subtransmission network serving a major part of north-eastern Victoria. It spans from Wangaratta in the north to Euroa in the south, to Mansfield and Mt Buller in the east, and Benalla centrally. Mount Beauty Terminal Station (MBTS) serves the kiewa hydro generation resources and supplies the alpine areas of Mt Hotham and Falls Creek, along with the townships of Bright, Myrtleford, and Mount Beauty. Ausnet Electricity Services is responsible for all these areas. GNTS has an operational capacity of 290 MVA with a 2022 peak load of 105 MVA, while MBTS has an operational capacity of around 75 MVA with a 2022 peak load of 40.3 MVA. Combined, these terminal stations supply power to at least 8 zone substations (ZSSs).

As shown in Table 6, the results indicate that this network may experience the following technical issued during the analysis period (if no network augmentation or planned connections/expansions are considered):

- The <u>terminal station</u> is expected to face significant <u>overload</u> by 2048, which escalates in the subsequent years. Low power factor will start being an issue by 2038.
- The <u>subtransmission network</u> is expected to face <u>voltage drop issues</u> at the 66kV level by 2033, which escalates in the subsequent years.

• Some <u>ZSS transformers</u> reach unacceptable <u>overload</u> levels by 2038, which escalates in the subsequent years.

Table 6. Impact assessment for the GNTS-MBTS subtransmission network without DOEs.

	Subtransmission Network – GNTS + MBTS (Without DOEs)								
	Year		2023	2028	2033	2038	2043	2048	2053
	Те	rminal Stations Assessme	nt (mode	l-based	simulatio	ns)			
Maximum I	Demand at GN Te	erminal Station (MVA)	104	136	184	239	287	344	380
Maximum I	Demand at MB Te	erminal Station (MVA)	23	28	36	44	52	62	70
Increase of M	Max. Demand at T	erminal Stations (MVA)	-	29%	34%	29%	20%	20%	11%
Power Factor	at GN Terminal S	Station for Max. Demand	0.97	0.93	0.91	0.87	0.85	0.82	0.80
Power Factor	at MB Terminal S	Station for Max. Demand	1.00	1.00	0.98	0.97	0.97	0.95	0.94
		HV Voltage Assessment (model-ba	ased sim	ulations				
% of	Buses with Volta	ige Rise Issues	0%	0%	0%	0%	0%	0%	0%
% of	Buses with Volta	ge Drop Issues	0%	0%	7%	13%	13%	20%	20%
	Maximum Volt	age (pu)	1.07	1.07	1.07	1.07	1.07	1.07	1.07
	Minimum Volta	age (pu)	0.99	0.95	0.86	0.76	0.71	0.66	0.63
		HV Thermal Assessment	model-b	ased sim	ulations)			
	% of Transformers with Maximum Utilisation	<= 100%	95%	91%	64%	50%	45%	45%	45%
		100%-110%	0%	5%	18%	0%	9%	0%	0%
		Avg. Overloading Duration (hr)	0	0.5	0.9	0	0.5	0	0
HV		110%-150%	5%	0%	14%	41%	18%	18%	18%
Transformers		Avg. Overloading Duration (hr)	1.1	0	0.7	4.2	3	3.1	3.4
		> 150%	0%	5%	5%	9%	27%	36%	36%
		Avg. Overloading Duration (hr)	0	0.3	0.9	1.3	2.6	4.9	5.8
		Jtilisation of the forming Transformer	123%	156%	171%	211%	223%	268%	286%
		<= 100%	100%	100%	100%	100%	100%	95%	95%
		100%-110%	0%	0%	0%	0%	0%	0%	0%
	% of Lines	Avg. Overloading Duration (hr)	0	0	0	0	0	0	0
HV Lines	with Maximum	110%-150%	0%	0%	0%	0%	0%	5%	5%
HV Lines	Utilisation	Avg. Overloading Duration (hr)	0	0	0	0	0	0.2	0.7
		> 150%	0%	0%	0%	0%	0%	0%	0%
		Avg. Overloading Duration (hr)	0	0	0	0	0	0	0
		Jtilisation of the Performing Line	47%	55%	68%	81%	93%	111%	124%

	MV-LV Voltage Assessment (extrapolation of metrics)								
Reside	Residential Voltage Rise Non-Compliance			2%	5%	8%	10%	12%	22%
Resider	ntial Voltage Dro	Non-Compliance	1%	4%	6%	8%	12%	15%	26%
% of LV	Networks with V	oltage Rise Issues	0.5%	4%	6%	7%	8%	9%	15%
% of LV	Networks with V	oltage Drop Issues	4%	7%	8%	10%	14%	16%	28%
% of LV Netwo	% of LV Networks with Both Voltage Rise & Drop Issues			4%	6%	6%	7%	9%	13%
		MV-LV Thermal Assessme	nt (extrap	olation (of metric	s)			
		<= 100%	98%	95%	90%	84%	78%	72%	70%
	tribution	100%-110%	0.9%	1%	2%	3%	3%	3%	3%
	with Maximum sation	110%-150%	0.7%	3%	5%	8%	9%	11%	11%
		> 150%	0%	0.8%	3%	5%	9%	14%	16%
		PV Curtailment Assessmer	nt (extrap	olation o	of metric	s)			
9	% of PV Custome	rs Curtailed	100%	100%	100%	100%	100%	100%	100%
Aggregate	Total PV	Total PV Curtailment (GWh)		9	14	20	27	35	44
Export	% of	PV Curtailment	6%	9%	12%	15%	18%	21%	23%

- S<u>ubtransmission lines</u> (66kV) should stay within acceptable <u>overload</u> levels throughout the entire assessment period (2023-2053).
- The MV-LV networks connected to the GNTS-MBTS subtransmission network face minor voltage issues by 2028, escalating to significant by 2033, and worsening in the subsequent years.
- The <u>MV-LV networks</u> connected to the GNTS-MBTS subtransmission network face minor <u>overload</u> on several <u>distribution transformers</u> in 2028, reaching 10% of distribution transformers by 2033, and a third by 2053.
- Considerable aggregate <u>PV curtailment</u> occurs from 2028 (9%), constantly increasing around 3% every year.

Detailed analysis is provided below.

Terminal Station Assessment

By 2038, GNTS is expected to experience power factors below the code requirements of 0.9. By 2048, GNTS is expected to exceed its normal operational limit by up to 19% during the worst day (winter peak), remaining above 100% utilization for 9h, which can be considered a severe overload. Both issues are expected to worsen in subsequent years, with power factor dropping as low as 0.8 (inductive) and overload reaching up to 131% with utilization above 100% for 14h by 2053. In contrast, MBTS is not expected to face any overload or power factor issues throughout the assessment period (2023-2053).

• In 2048, GNTS experiences overload for 2h during early morning (1am-3am), briefly subsides, then overloads again for 2h during peak morning hours (6am-9am). It normalises during late morning and afternoon before overloading for 5h during peak evening hours (5pm-

10pm). By 2053, the overload pattern intensifies, extending throughout the early morning (1am-6am) and further intensifying during peak hours.

- This increasing overload is primarily driven by residential adoption of electrified heating/cooling systems and EVs. Between 2023 and 2048, demand increases drastically, surging almost 5-fold in early morning hours and 3-fold during peak periods.
- Note that these calculations assume GNTS-MBTS subtransmission network operates in isolation from the rest of the grid, disregarding potential interconnections that could alleviate loading. Furthermore, any hydro generation that may actually be connected to this network was not included in the model.

Subtransmission Voltage Assessment

By 2033, initial undervoltage issues may emerge on some buses, falling below the code requirement of 0.9 pu for 66kV networks during peak periods (both morning and evening) of the worst day (winter peak). In subsequent years, these low voltage issues are expected to intensify and expand, first extending to early morning hours and later into the afternoon.

- By 2033, 2 buses (7%) on the 66kV level experience undervoltage issues, indicating that the
 OLTCs in both terminal stations have reached their operational limits in maintaining voltage
 levels. In 2038, an additional 2 buses on the 22kV level start experiencing low voltage issues,
 indicating that OLTCs from these ZSSs have also reached their operational limits in
 maintaining voltage levels.
- These low voltages result from expected high demands driven by residential adoption of electrified heating/cooling systems and EVs.
- Note that the primary side (220kV) of GNTS is assumed to provide fixed voltages at 1.021 pu and MBTS is assumed to provide fixed voltages at 1 pu, as per received model.

Subtransmission Thermal Assessment

Since the base year (2023), 5% (1) of ZSS transformers already face acceptable overload. This issue is expected to escalate if network augmentation is not considered, reaching unacceptable levels by 2038 when 50% (9) of ZSS transformers are expected to operate above 110% capacity for several hours during peak demand days. In contrast, 66kV lines are expected to remain robust enough to accommodate the increasing demand throughout the entire assessment period (2023-2053).

By 2038, 9% (1) of ZSS transformers are expected to face extreme overload (>150%) during peak hours for an average of 1.3h, while another 41% (8) are expected to experience significant overload (110%-150%) for an average of 4.2h. The situation worsens in subsequent years, with 36% (6) of ZSS transformers expected to undergo extreme overutilization (>150%) by 2053, reaching up to 286% utilization.

 In 2038, overload occurs during early morning hours (1am-6am) and peak periods (both morning and evening). By 2053, this overload extends throughout the entire day, intensifying during early morning and peak hours.

MV-LV Voltage Assessment

By 2028, the MV-LV networks connected to the ERTS subtransmission loop reaches 33% PV penetration, triggering minor voltage issues that start limiting further PV uptake.

- As voltage regulation devices in the MV-LV networks are operated to balance voltage
 headroom and footroom, more voltage drop issues emerge while managing PV-related
 voltage rise. This indicates that voltage regulation devices (i.e., tap positions) have reached
 their limits in maintaining customer voltages within both upper and lower boundaries.
- In 2028, of the estimated 37,113 residential customers, 2% (~742) are expected to face voltage rise issues and 4% (~1484) voltage drop issues, which still does not exceed the code requirement that voltage non-compliance should remain below 5%.

From 2028 to 2033, the MV-LV networks experience heating electrification and a surge in EV uptake, from 14% to 50%, while PV uptake grows modestly, from 33% to 36%. Consequently, rising the net demand, which exacerbates voltage issues.

More specifically, from 2028 to 2033, both voltage rise and voltage drop non-compliance
increases around 2%, bringing the voltage non-compliance outside the code requirements.
Again, voltage regulation devices (i.e. tap positions) reach their limits in maintaining customer
voltages within both upper and lower boundaries. Consequently, efforts to address demandrelated voltage drop issues further exacerbate voltage rise problems.

MV-LV Thermal Assessment

By 2028, only 5% (~396) of the distribution transformers in the MV-LV networks connected to the GNTS-MBTS subtransmission network experience overload. However, without network augmentation, this issue can escalate rapidly in subsequent years.

• Without network augmentation, by 2033, 10% (~791) of distribution transformers may be overloaded, with 5% (~396) facing significant (110%-150%) and 3% (~237) extreme (>150%) overload. By 2038, overloaded transformers increase to 16% (~1,266), with 8% (~633) experiencing significant and 5% (~396) extreme overload. This trend keeps up until reaching overload for 30% (~2,374) of distribution transformers by 2053, with 11% (~870) experiencing significant and 16% (~1,266) extreme overload.

PV Curtailment Assessment

In 2028, with 33% PV penetration, some PV customers may face curtailment due to network-wide voltage rise issues. Simulations assume residential PV systems have 5 kVA inverters, which can limit export opportunities and reduce overall renewable energy penetration across the MV-LV networks.

All PV customers may experience varying degrees of curtailment. The aggregated PV curtailment increases dramatically from 5 GWh (6%) in 2023 to 44 GWh (23%) in 2053. This curtailment is mainly due to the 5 kVA capacity limit of residential PV inverters, with further curtailment resulting from the PV Volt-Watt inverter function.

SMTS Subtransmission Network

South Morang Terminal Station (SMTS) supplies a 66kV subtransmission network that spans from Seymour, Kilmore, Kalkallo, Kinglake and Rubicon in the north to Mill Park in the south and from Doreen and Mernda in the east to Somerton and Craigieburn in the west. The electricity distribution networks for this area are the responsibility of both AusNet Electricity Services (72%) and Jemena Electricity Networks (28%). With an operational capacity of 530 MVA and a 2023 peak load of 356 MVA, SMTS supplies power to at least 9 zone substations (ZSSs).

As shown in Table 7, the results indicate that this network may experience the following technical issued during the analysis period (if no network augmentation or planned connections/expansions are considered):

- The <u>terminal station</u> is expected to face minor <u>overload</u> by 2038, escalating to a significant overload by 2043.
- The <u>subtransmission network</u> is expected to face <u>voltage drop issues</u> at the 66kV level by 2033, which escalates in the subsequent years.
- Some <u>ZSS transformers</u> reach unacceptable <u>overload</u> levels by 2033, which escalates in the subsequent years.
- Some <u>subtransmission lines</u> (66kV) reach unacceptable <u>overload</u> levels by 2038, which escalates in the subsequent years.
- The MV-LV networks connected to the SMTS subtransmission loop face minor voltage issues from 2023, escalating to moderate by 2028 and significant after 2033.
- The MV-LV networks connected to the SMTS subtransmission loop face minor overload on several distribution transformers in 2028, affecting 12% of distribution transformers by 2033, and a third by 2053.
- Considerable aggregate <u>PV curtailment</u> occurs after 2028, constantly increasing around 3% every year.

Detailed analysis is provided below.

Terminal Station Assessment

By 2038, South Morang terminal station is expected to exceed its normal operational limit by up to 3% during the worst day (winter peak) and remain above 100% utilization for 4h, which is manageable. However, in 2043, SMTS is expected to experience considerable overload, reaching up to 22% above capacity and operating over 100% for at least 8h during the worst day (winter peak). This overloading is expected to intensify in subsequent years, reaching extreme levels by 2053 with up to 157% overload and continuous overutilization for 17h.

Table 7. Impact assessment for the SMTS subtransmission network without DOEs.

		Subtransmissior (Withou	n Network ut DOEs)	- SMTS					
	Year		2023	2028	2033	2038	2043	2048	2053
	Те	rminal Station Assessme	nt (model	-based s	imulatio	ns)			
Maximun	n Demand at Tern	ninal Station (MVA)	274	338	430	546	646	756	832
Increase of I	Max. Demand at T	erminal Station (MVA)	-	23%	27%	27%	18%	17%	10%
Power Facto		ition for Max. Demand	1.00	0.99	0.98	0.96	0.94	0.92	0.91
		HV Voltage Assessment							
	Buses with Volta		0%	0%	0%	0%	0%	0%	0%
% of	Buses with Volta	ge Drop Issues	0%	0%	21%	39%	45%	48%	48%
	Maximum Volta	age (pu)	1.04	1.04	1.05	1.06	1.05	1.06	1.06
	Minimum Volta	age (pu)	0.93	0.90	0.86	0.75	0.70	0.65	0.62
		HV Thermal Assessment	(model-ba	ased sim	ulations)			
		<= 100%	95%	85%	65%	60%	60%	50%	50%
		100%-110%	5%	5%	0%	0%	0%	0%	0%
	% of	Avg. Overloading Duration (hr)	1.5	3	0	0	0	0	0
HV	Transformers with Maximum	110%-150%	0%	10%	30%	30%	5%	15%	10%
Transformers	Utilisation	Avg. Overloading Duration (hr)	0	2	3.3	10	7	5	4.5
		> 150%	0%	0%	5%	10%	35%	35%	40%
		Avg. Overloading Duration (hr)	0	0	13.5	12	7.9	13.5	14.1
	-	Itilisation of the orming Transformer	104%	118%	209%	306%	383%	422%	441%
		<= 100%	100%	100%	96%	84%	84%	64%	60%
		100%-110%	0%	0%	4%	4%	0%	8%	4%
	% of Lines	Avg. Overloading Duration (hr)	0	0	3	5.5	0	5	5
LIV Lines	with Maximum	110%-150%	0%	0%	0%	12%	8%	20%	24%
HV Lines	Utilisation	Avg. Overloading Duration (hr)	0	0	0	6.2	8.5	6.9	7.3
		> 150%	0%	0%	0%	0%	8%	8%	12%
		Avg. Overloading Duration (hr)	0	0	0	0	3.3	10	10.5
	Worst	Itilisation of the Performing Line	66%	81%	106%	138%	158%	172%	181%
	MV-LV Voltage Assessn			olation o	f metric	s)			
Reside	ntial Voltage Rise	Non-Compliance	0%	2%	5%	8%	11%	13%	18%
Resider	Residential Voltage Drop Non-Compliance			4%	8%	12%	16%	20%	26%
% of LV	% of LV Networks with Voltage Rise Issues			5%	9%	10%	11%	13%	17%
% of LV	% of LV Networks with Voltage Drop Issues				12%	14%	18%	22%	32%
% of LV Netwo	of LV Networks with Both Voltage Rise & Drop Issues				9%	10%	11%	12%	16%

		MV-LV Thermal Assessme	nt (extrap	olation o	of metric	s)			
		<= 100%	99%	96%	88%	80%	75%	69%	67%
% of Distribution Transformers with Maximum		100%-110%	0.6%	1%	4%	3%	3%	3%	3%
Transformers with Maximum Utilisation		110%-150%	0.6%	2%	6%	12%	11%	11%	10%
		> 150%	0%	0.6%	2%	5%	11%	18%	20%
		PV Curtailment Assessmer	nt (extrap	olation o	of metric	s)			
9	% of PV Custome	rs Curtailed	100%	100%	100%	100%	100%	100%	100%
Aggregate	Aggregate Total PV Curtailment (GWh)		12	24	37	52	71	94	117
Export			6%	9%	12%	15%	18%	21%	24%

- In 2038, overloading occurs for 1h during peak morning hours (6am-9am) and 3h during peak
 evening hours (5pm-10pm). By 2043, overloading extends into part of the early morning
 (1am-6am) while intensifying during peak hours. In subsequent years, it progressively
 spreads to the remainder of the early morning, parts of the late morning, and afternoon
 periods, ultimately reaching 17h of overload by 2053.
- This increasing overload is primarily driven by residential adoption of electrified heating/cooling systems and EVs. From 2023 to 2043, demand surges 6-fold in early mornings and 2.2-fold during peak hours. By 2053, the increase intensifies further, with loads rising 10-fold in early mornings and just over 3-fold during peak hours compared to 2023.
- Note that these calculations assume SMTS and its corresponding subtransmission loop to be isolated from the rest of the grid, disregarding potential interconnections that could be used to alleviate loading.

Subtransmission Voltage Assessment

By 2033, approximately 21% (6) of the buses may experience undervoltage issues, falling below the code requirement of 0.9 pu for 66kV networks, during peak periods (both morning and evening) of the worst day (winter peak). By 2038, an additional 2 66kV buses and 5 22kV buses fall below their respective low voltage limits of 0.9 pu and 0.94 pu. This trend continues in subsequent years, with low voltage issues intensifying and extending to early morning and late morning hours as well.

- By 2038, 8 out of 13 buses experiencing undervoltage issues are on the 66kV network, with 5 on the 22kV (secondary of ZSSs). This indicates that OLTCs and capacitor banks at these ZSSs have reached their operational limits in maintaining voltage levels.
- These low voltages result from expected high demands driven by residential adoption of electrified heating/cooling systems and EVs.
- Note that the terminal station is assumed to provide fixed voltages at 1.03 pu (as per received model), with its transformers not being modelled. If SMTS transformers were modelled, their OLTCs could potentially mitigate this voltage drop issues on the subtransmission network.

Subtransmission Thermal Assessment

Since the base year (2023), 5% (1) of ZSS transformers already face acceptable overload. This issue is expected to escalate rapidly if network augmentation is not considered, reaching unacceptable levels by 2033. While 66kV lines are expected to remain robust enough to accommodate the increasing demand until 2038.

- By 2033, 5% (1) of ZSS transformers are expected to face extreme overload (>150%) for around 13.5h, while another 30% (5) are expected to experience significant overload (110%-150%) for an average of 3.3h. The situation worsens in subsequent years, with 40% (7) of ZSS transformers expected to undergo extreme overutilization (>150%) by 2053, reaching up to 441% utilization.
- By 2038, 12% (2) of 66kV lines are expected to face significant overload (110%-150%) during peak hours for an average of 6.2h, which is likely to be unmanageable with peak overutilization around 138% and extended duration. The situation deteriorates rapidly in subsequent years, with 12% (2) of 66kV lines expected to experience extreme overutilization (>150%) by 2053, reaching up to 181% utilization.

MV-LV Voltage Assessment

By 2028, the MV-LV networks connected to the SMTS subtransmission loop reaches 33% PV penetration, triggering moderate voltage issues that starts limiting further PV uptake.

- As voltage regulation devices in the MV-LV networks are operated to balance voltage
 headroom and footroom, more voltage drop issues emerge while managing PV-related
 voltage rise. This indicates that voltage regulation devices (i.e., tap positions) have reached
 their limits in maintaining customer voltages within both upper and lower boundaries.
- In 2028, of the estimated 81,421 residential customers, 2% (~1,628) are expected to face voltage rise issues and 4% (~3,257) voltage drop issues, which still does not exceed the code requirement that voltage non-compliance should remain below 5%.

From 2028 to 2033, the MV-LV networks experience heating electrification and a surge in EV uptake, from 14% to 50%, while PV uptake grows modestly, from 33% to 36%. Consequently, rising the net demand, which exacerbates voltage issues

• More specifically, from 2028 to 2033, voltage rise non-compliance increases by nearly 3% and voltage drop non-compliance by 4%, bringing the voltage non-compliance outside the code requirements. Again, voltage regulation devices (i.e. tap positions) reach their limits in maintaining customers voltages within both upper and lower boundaries. Thus, efforts to address demand-related voltage drop issues further exacerbate voltage rise problems.

MV-LV Thermal Assessment

By 2028, only 4% (~392) of the distribution transformers in the MV-LV networks connected to the SMTS subtransmission loop experience overloading, with 2% (~196) facing significant overload

(110%-150%). However, without network augmentation, this issue can escalate rapidly in subsequent years.

• Without network augmentation, by 2033, 12% (~1,177) of distribution transformers may be overloaded, with 6% (~589) facing significant (110%-150%) and 2% (~196) extreme (>150%) overload. By 2038, overloaded transformers increase to 20% (~1,962), with 12% (~1,177) experiencing significant and 5% (~490) extreme overload. This trend keeps up until reaching overload for 33% (~3,237) of distribution transformers by 2053, with 10% (~981) experiencing significant and 20% (~1,962) extreme overload.

PV Curtailment Assessment

In 2028, with 33% PV penetration, some PV customers may face curtailment due to network-wide voltage rise issues. Simulations assume residential PV systems have 5 kVA inverters, which can limit export opportunities and reduce overall renewable energy penetration across the MV-LV networks.

All PV customers may experience varying degrees of curtailment. The aggregated PV curtailment increases dramatically from 12 GWh (6%) in 2023 to 117 GWh (24%) in 2053.
 This curtailment is mainly due to the 5 kVA capacity limit of residential PV inverters, with further curtailment resulting from the PV Volt-Watt inverter function.

TSTS Subtransmission Network

Templestowe Terminal Station (TSTS) is the main supply of a 66kV subtransmission network that serves major part of the north-eastern metropolitan area. It spans from Eltham in the north to Canterbury in the south, and from Donvale in the east to Kew in the west. The electricity supply network for this large region is split between United Energy (42%), CitiPower (30%), AusNet Electricity Services (20%), and Jemena Electricity Networks (8%). With an operational capacity of 531 MVA and a 2023 peak load of 301 MVA, TSTS supplies power to at least 5 zone substations (ZSSs).

As shown in Table 8, the results indicate that this network may experience the following technical issued during the analysis period (if no network augmentation or planned connections/expansions are considered):

- The <u>terminal station</u> is expected to face minor <u>overload</u> by 2033, escalating to a significant overloading by 2038.
- The <u>subtransmission network is not expected</u> to experience <u>any voltage issues</u> during peak demand days throughout the entire assessment period (2023-2053).
- Some <u>ZSS transformers</u> reach unacceptable <u>overload</u> levels by 2048, which escalates in the subsequent years.
- Subtransmission lines (66kV) should stay within acceptable overload levels throughout the entire assessment period (2023-2053).
- The MV-LV networks connected to the TSTS subtransmission network face minor voltage issues from 2023, escalating to moderate by 2028, and severe after 2033.

- The MV-LV networks connected to the TSTS subtransmission network face minor overload on several distribution transformers in 2028, affecting 16% of distribution transformers by 2033, and 34% by 2043.
- Considerable aggregate <u>PV curtailment</u> occurs after 2028, constantly increasing around 3% every year.

Detailed analysis is provided below.

Table 8. Impact assessment for the TSTS subtransmission network without DOEs.

		Subtransmission (Withou		k – TSTS					
	Year		2023	2028	2033	2038	2043	2048	2053
	Te	erminal Station Assessmer	nt (mode	l-based s	imulatio	ns)			
Maximun	n Demand at Terr	minal Station (MVA)	359	433	538	659	781	912	1002
Increase of I	Max. Demand at 1	Ferminal Station (MVA)	-	20%	24%	22%	19%	17%	10%
Power Facto	or at Terminal Sta	ation for Max. Demand	0.99	0.99	0.98	0.97	0.96	0.96	0.95
	HV Voltage Assessment			ased sim	ulations)			
% of	% of Buses with Voltage Rise Issues			0%	0%	0%	0%	0%	0%
% of	% of Buses with Voltage Drop Issues			0%	0%	0%	0%	0%	0%
	Maximum Voltage (pu)			1.01	1.01	1.01	1.01	1.01	1.01
	0.99	0.99	0.99	0.99	0.99	0.99	0.98		
		HV Thermal Assessment (model-b	ased sim	ulations)			
	% of Transformers with HV Maximum	<= 100%	100%	100%	100%	0%	0%	0%	0%
		100%-110%	0%	0%	0%	100%	0%	0%	0%
		Avg. Overloading Duration (hr)	0	0	0	3.5	0	0	0
HV		110%-150%	0%	0%	0%	0%	100%	100%	100%
Transformers	Utilisation	Avg. Overloading Duration (hr)	0	0	0	0	4.3	7	10.8
		> 150%	0%	0%	0%	0%	0%	0%	0%
		Avg. Overloading Duration (hr)	0	0	0	0	0	0	0
		Jtilisation of the forming Transformer	77%	86%	97%	110%	122%	134%	143%
		<= 100%	100%	100%	100%	100%	100%	100%	67%
		100%-110%	0%	0%	0%	0%	0%	0%	33%
	% of Lines	Avg. Overloading Duration (hr)	0	0	0	0	0	0	3
HV Lines	with Maximum	110%-150%	0%	0%	0%	0%	0%	0%	0%
TIV LINES	Utilisation	Avg. Overloading Duration (hr)	0	0	0	0	0	0	0
		> 150%	0%	0%	0%	0%	0%	0%	0%
		Avg. Overloading Duration (hr)	0	0	0	0	0	0	0
	Max. Utilisation of the Worst Performing Line			59%	67%	77%	85%	96%	103%

		MV-LV Voltage Assessmer	ıt (extrap	olation o	f metrics	s)			
Reside	ntial Voltage Rise	Non-Compliance	0%	1%	4%	6%	10%	12%	15%
Resider	ntial Voltage Dro	Non-Compliance	2%	4%	9%	14%	18%	23%	26%
% of LV	Networks with V	oltage Rise Issues	0.8%	10%	16%	18%	20%	22%	23%
% of LV	Networks with V	oltage Drop Issues	10%	18%	21%	24%	30%	36%	41%
% of LV Netwo	orks with Both Vo	oltage Rise & Drop Issues	0.8%	10%	16%	18%	20%	22%	23%
		MV-LV Thermal Assessmer	nt (extrap	olation o	of metric	s)			
		<= 100%	100%	97%	84%	72%	66%	61%	59%
	tribution with Maximum	100%-110%	0%	2%	6%	4%	3%	3%	2%
	ation	110%-150%	0.2%	0.2%	9%	19%	15%	11%	10%
		> 150%	0%	0.2%	0.5%	5%	15%	26%	29%
		PV Curtailment Assessmer	nt (extrap	olation o	of metric	s)			
%	% of PV Custome	rs Curtailed	100%	100%	100%	100%	100%	100%	100%
Aggregate	Aggregate Total PV Curtailment (GWh)		12	23	35	50	69	91	113
Export	% of	PV Curtailment	6%	9%	12%	15%	18%	21%	24%

Terminal Station Assessment

By 2033, TSTS is expected to exceed is expected to marginally exceed its normal operational limit by 1% during the worst day (winter peak), which is well within manageable levels. However, in 2038, TSTS is expected to experience considerable overload, reaching up to 24% above capacity and operating over 100% for 13h during the worst day (winter peak). This overloading is expected to intensify in subsequent years, reaching extreme levels by 2053 with up to 189% overload and continuous overutilization for 20h.

- In 2038, mild overload occurs for 5h during early morning (1am-6am), intensifies for 3h during peak morning hours (6am-9am), subsides during late morning and afternoon, then resurges heavily for 5h during peak evening hours (5pm-10pm). By 2043, overload intensifies during morning hours and peak demand periods, extending into part of late morning. In subsequent years, it progressively spreads to more parts of late morning and afternoon periods, ultimately resulting in 20 hours of overload by 2053.
- This increasing overload is primarily driven by residential adoption of electrified heating/cooling systems and EVs. From 2023 to 2038, demand surges 3.5-fold in early mornings and just over 2-fold during peak hours. By 2053, the increase intensifies further, with loads rising 6.5-fold in early mornings and just over 3-fold during peak hours compared to 2023.
- Note that these calculations assume TSTS and its corresponding subtransmission network to be isolated from the rest of the grid, disregarding potential interconnections that could be used to alleviate loading.

Subtransmission Voltage Assessment

The TSTS subtransmission network is not expected to experience any voltage issues during peak demand days throughout the entire assessment period (2023-2053).

- Despite the surge on demand driven by residential adoption of electrified heating/cooling systems and EVs, voltages are expected to remain very close to the voltage at the secondary of the terminal station. This happens because in the received model most of the loads are connected directly to the terminal station.
- Note that the terminal station is assumed to provide fixed voltages at 1.008 pu (as per received model). In addition, the terminal station is not modelled in detail, meaning its transformers are not included in the simulation.

Subtransmission Thermal Assessment

ZSS transformers is expected to start facing some overloading by 2038, but it is at acceptable levels (100%-110%) and for only 3.5h. This issue is expected to escalate rapidly if network augmentation is not considered, reaching almost unmanageable levels by 2043, and unmanageable levels by 2048. In contrast, 66kV lines are expected to remain robust enough to accommodate the increasing demand throughout the entire assessment period (2023-2053).

- By 2043, all 3 (100%) ZSS transformers are expected to face significant overload (110%-150%) during peak hours for an average of 4.3h. The situation is expected to worsen in subsequent years, with these same transformers expected to undergo significant overutilization (110%-150%) for an average of 7h by 2048 and 10.8h by 2053.
- In 2043, overload occurs during peak periods (both morning and evening). By 2048, it
 expands to include early morning hours (1am-6am) and intensifies during peak periods. By
 2053, this overload pattern further intensifies, particularly during early morning and peak
 hours
- Note that the received network model includes only one ZSS with its transformers modelled, the other ZSS were connected as direct loads to the TSTS.

MV-LV Voltage Assessment

By 2028, the MV-LV networks connected to the TSTS subtransmission network reaches 33% PV penetration, triggering moderate voltage issues that starts limiting further PV uptake.

As voltage regulation devices in the MV-LV networks are operated to balance voltage
headroom and footroom, more voltage drop issues emerge while managing PV-related
voltage rise. This indicates that voltage regulation devices (i.e., tap positions) have reached
their limits in maintaining customer voltages within both upper and lower boundaries.

In 2028, of the estimated 68,787 residential customers, 1% (~688) are expected to face
voltage rise issues and 4% (~2,751) voltage drop issues, which still does not exceed the code
requirement that voltage non-compliance should remain below 5%.

From 2028 to 2033, the MV-LV networks experience heating electrification and a surge in EV uptake, from 14% to 50%, while PV uptake grows modestly, from 33% to 36%. Consequently, rising the net demand, which exacerbates voltage issues

More specifically, from 2028 to 2033, voltage rise non-compliance increases by 3% and
voltage drop non-compliance by 5%, bringing the voltage non-compliance outside the code
requirements. Again, voltage regulation devices (i.e. tap positions) reach their limits in
maintaining customers voltages within both upper and lower boundaries. Thus, efforts to
address demand-related voltage drop issues further exacerbate voltage rise problems.

MV-LV Thermal Assessment

By 2028, only 3% (~99) of the distribution transformers in the MV-LV networks connected to the TSTS subtransmission network experience overloading, with 2% (~66) facing minor overload (100%-110%). However, without network augmentation, this issue can escalate rapidly in subsequent years.

• Without network augmentation, by 2033, 16% (~528) of distribution transformers may be overloaded, with 9% (~297) facing significant (110%-150%) and 0.5% (~16) extreme (>150%) overload. By 2043, overloaded transformers increase to 34% (~1,121), with 15% (~495) experiencing significant and 15% (~495) extreme overload. This trend keeps up until reaching overload for 41% (~1,352) of distribution transformers by 2053, with 10% (~330) experiencing significant and 29% (~956) extreme overload.

PV Curtailment Assessment

In 2028, with 33% PV penetration, some PV customers may face curtailment due to network-wide voltage rise issues. Simulations assume residential PV systems have 5 kVA inverters, which can limit export opportunities and reduce overall renewable energy penetration across the MV-LV networks.

All PV customers may experience varying degrees of curtailment. The aggregated PV curtailment increases dramatically from 12 GWh (6%) in 2023 to 113 GWh (24%) in 2053.
 This curtailment is mainly due to the 5 kVA capacity limit of residential PV inverters, with further curtailment resulting from the PV Volt-Watt inverter function.

TTS Subtransmission Network

Thomastown Terminal Station (TTS) supplies a 66kV subtransmission network that serves the north of greater Melbourne, including Thomastown, Coburg, Preston, Watsonia, North Heidelberg, Lalor, Coolaroo, and Broadmeadows areas. The electricity supply network for this region is split between Jemena Electricity Networks (61%) and AusNet Electricity Services (39%). With an operational

capacity of 325 MVA and a 2023 peak load of 212 MVA, TTS supplies power to at least 5 zone substations (ZSSs).

As shown in Table 9, the results indicate that this network may experience the following technical issued during the analysis period (if no network augmentation or planned connections/expansions are considered):

- The <u>terminal station</u> is expected to face minor <u>overload</u> by 2028, escalating to a significant overloading by 2033.
- The <u>subtransmission network</u> is expected to face <u>voltage drop issues</u> at the 66kV level by 2038, which escalates in the subsequent years.
- Some <u>ZSS transformers</u> reach unacceptable <u>overload</u> levels by 2033, which escalates in the subsequent years.
- Some <u>subtransmission lines</u> (66kV) reach unacceptable <u>overload</u> levels by 2038, which escalates in the subsequent years.
- The MV-LV networks connected to the TTS subtransmission network face minor voltage issues from 2023, escalating to moderate by 2028 and significant after 2033.
- The MV-LV networks connected to the TTS subtransmission network face minor overload on several distribution transformers in 2028, affecting 27% of distribution transformers by 2033 and almost a half by 2038.
- Considerable aggregate <u>PV curtailment</u> occurs after 2028, constantly increasing around 3%every year.

Detailed analysis is provided below.

Terminal Station Assessment

By 2028, TTS is expected to marginally exceed its normal operational limit by 5% for no more than 2h during the worst day (winter peak), which is well within manageable levels. However, by 2033, TTS is expected to experience considerable overload, reaching up to 46% above capacity and operating over 100% for 9h. This overloading is anticipated to intensify in subsequent years, reaching extreme levels by 2053 with up to 344% overload and continuous overutilization for 22 hours. Additionally, the terminal station is expected to face power factors below the code requirements of 0.9 from 2043, with this issue worsening over subsequent years.

 In 2028, overload occurs for less than 2h during peak hours (both morning and evening). By 2033, overloading extends to early mornings (1am-6am), while intensifying during peak hours.
 In subsequent years, it progressively spreads to late morning and afternoon periods, ultimately reaching 22h overload by 2053.

Table 9. Impact assessment for the TTS subtransmission network without DOEs.

			Subtransmission Network – TTS (Without DOEs)											
	Year		2023	2028	2033	2038	2043	2048	2053					
	Te	rminal Station Assessme	nt (mode	l-based s	imulatio	ns)								
Maximun	n Demand at Tern	ninal Station (MVA)	254	340	475	640	820	983	1120					
Increase of I	Max. Demand at T	erminal Station (MVA)		34%	40%	35%	28%	20%	14%					
Power Facto	or at Terminal Sta	ation for Max. Demand	1.00	0.98	0.95	0.92	0.87	0.83	0.79					
		HV Voltage Assessment	(model-ba	ased sim	ulations)								
% of	Buses with Volta	ge Rise Issues	0%	0%	0%	0%	0%	0%	0%					
% of	Buses with Volta	ge Drop Issues	0%	0%	0%	8%	31%	54%	85%					
	Maximum Volta	age (pu)	1.02	1.02	1.02	1.02	1.02	1.02	1.02					
	Minimum Volta	0.99	0.97	0.95	0.92	0.82	0.76	0.73						
		HV Thermal Assessment	(model-b	ased sim	ulations)								
		<= 100%	100%	43%	14%	14%	0%	0%	0%					
		100%-110%	0%	14%	0%	0%	0%	0%	0%					
	% of	Avg. Overloading Duration (hr)	0	1.5	0	0	0	0	0					
HV	Transformers with Maximum	110%-150%	0%	43%	71%	29%	0%	0%	0%					
Transformers	Utilisation	Avg. Overloading Duration (hr)	0	1.5	6.6	13.8	0	0	0					
		> 150%	0%	0%	14%	57%	100%	100%	100%					
		Avg. Overloading Duration (hr)	0	0	2	8.8	11.1	16.3	18.1					
	Max. U Worst Perf	92%	114%	154%	202%	239%	267%	297%						
		<= 100%	100%	100%	90%	80%	60%	60%	60%					
		100%-110%	0%	0%	0%	0%	0%	0%	0%					
	% of Lines	Avg. Overloading Duration (hr)	0	0	0	0	0	0	0					
UV Lines	with Maximum	110%-150%	0%	0%	10%	10%	20%	0%	0%					
HV Lines	Utilisation	Avg. Overloading Duration (hr)	0	0	3	5	4.5	0	0					
		> 150%	0%	0%	0%	10%	20%	40%	40%					
		Avg. Overloading Duration (hr)	0	0	0	0.5	7.5	7.4	10.5					
	Max. Utilisation of the Worst Performing Line			85%	114%	151%	194%	226%	244%					
	MV-LV Voltage Assessm			olation c	f metric	s)								
Resider	ntial Voltage Rise	Non-Compliance	0%	1%	3%	4%	8%	11%	12%					
	Residential Voltage Drop Non-Compliance			3%	9%	13%	18%	22%	24%					
Resider	ntial Voltage Drop	Non-Compliance	1%	3 /0	370		1070	/-	2470					
		Non-Compliance	1% 1%	15%	25%	29%	31%	34%	34%					
% of LV	Networks with Vo													

		MV-LV Thermal Assessme	nt (extrap	olation o	of metric	s)			
		<= 100%	100%	96%	73%	53%	46%	41%	40%
% of Distribution Transformers with Maximum Utilisation		100%-110%	0%	4%	10%	6%	4%	4%	2%
		110%-150%	0%	0%	16%	33%	24%	13%	12%
		> 150%	0%	0%	0%	8%	26%	43%	47%
		PV Curtailment Assessmer	nt (extrap	olation o	of metric	s)			
9	% of PV Custome	rs Curtailed	100%	100%	100%	100%	100%	100%	100%
Aggregate Total PV Curtailment (GWh)		15	29	44	63	85	113	140	
Export % of PV Curtailment		6%	9%	12%	15%	18%	21%	24%	

- This increasing overload is primarily driven by residential adoption of electrified heating/cooling systems and EVs. From 2023 to 2033, demand surges almost 4-fold in early mornings and nearly 2-fold during peak hours. By 2053, the increase intensifies further, with loads rising 11-fold in early mornings and approximately 3.5-fold during peak hours compared to 2023 levels.
- Note that these calculations assume TTS and its corresponding subtransmission network to be isolated from the rest of the grid, disregarding potential interconnections that could be used to alleviate loading.

Subtransmission Voltage Assessment

By 2038, 1 22kV bus is expected to face undervoltage issues, falling below the code requirement of 0.94 pu, during peak periods (both morning and evening) of the worst day (winter peak). By 2043, an additional 66kV bus and 2 22kV buses are expected to fall below their respective low voltage limits of 0.9 pu and 0.94 pu. This trend continues in subsequent years, with low voltage issues intensifying and extending to early morning and part of the late morning hours as well.

- By 2043, 1 out of 4 buses experiencing undervoltage issues are on the 66kV network, with 3
 on the 22kV (secondary of ZSSs). This indicates that OLTCs and capacitor banks at these
 ZSSs have reached their operational limits in maintaining voltage levels.
- These low voltages result from expected high demands driven by residential adoption of electrified heating/cooling systems and EVs.
- Note that the terminal station is assumed to provide fixed voltages at 1.0151 pu (as per received model), with its transformers not being modelled. If TTS transformers were modelled, their OLTCs could potentially mitigate this voltage drop issues on the subtransmission network.

Subtransmission Thermal Assessment

ZSS transformers are expected to start experiencing some overload by 2028, but it remains manageable with overutilization occurring for only 3 hours and reaching a maximum of 114%. This

issue is projected to escalate rapidly if network augmentation is not implemented, reaching unmanageable levels by 2033 and worsening in subsequent years. Concurrently in 2033, 66kV lines are expected to start facing overutilization, which is likely manageable given the brief duration (3 hours) and low maximum (114%). However, by 2038, 66kV lines are anticipated to reach unmanageable utilization levels.

- By 2033, 14% (1) of ZSS transformers is expected to face extreme overload (>150%) during peak hours for 2h, while another 71% (5) are expected to experience significant overload (110%-150%) for an average of 6.6h. The situation is expected to worsen in subsequent years, with all 7 (100%) ZSS transformers expected to undergo extreme overutilization (>150%) by 2053, reaching up to 297% utilization.
- By 2038, 1 (10%) 66kV line is expected to face extreme overload (>150%) during peak hours for 0.5h, while another is expected to experience significant overload (110%-150%) for an average of 5h. The situation is expected to worsen rapidly in subsequent years, with 40% (4) of 66kV lines expected to experience extreme overutilization (>150%) by 2053, reaching up to 244% utilization for an average of 10.5h.

MV-LV Voltage Assessment

By 2028, the MV-LV networks connected to the TTS subtransmission network reaches 33% PV penetration, triggering moderate voltage issues that starts limiting further PV uptake.

- As voltage regulation devices in the MV-LV networks are operated to balance voltage
 headroom and footroom, more voltage drop issues emerge while managing PV-related
 voltage rise. This indicates that voltage regulation devices (i.e., tap positions) have reached
 their limits in maintaining customer voltages within both upper and lower boundaries.
- In 2028, of the estimated 80,880 residential customers, 1% (~809) are expected to face
 voltage rise issues and 3% (~2,426) voltage drop issues, which still does not exceed the code
 requirement that voltage non-compliance should remain below 5%.

From 2028 to 2033, the MV-LV networks experience heating electrification and a surge in EV uptake, from 14% to 50%, while PV uptake grows modestly, from 33% to 36%. Consequently, rising the net demand, which exacerbates voltage issues

More specifically, from 2028 to 2033, voltage rise non-compliance increases by 2% and
voltage drop non-compliance by 6%, bringing the voltage non-compliance outside the code
requirements. Again, voltage regulation devices (i.e. tap positions) reach their limits in
maintaining customers voltages within both upper and lower boundaries. Thus, efforts to
address demand-related voltage drop issues further exacerbate voltage rise problems.

MV-LV Thermal Assessment

By 2028, only 4% (~48) of the distribution transformers in the MV-LV networks connected to the TTS subtransmission network experience minor overload (100%-110%). However, without network augmentation, this issue can escalate rapidly in subsequent years.

• Without network augmentation, by 2033, 27% (~322) of distribution transformers may be overloaded, with 16% (~191) facing significant (110%-150%). By 2038, overloaded transformers increase to almost half (~561), with 33% (~394) experiencing significant and 8% (~95) extreme overload. This trend keeps up until reaching overload for 60% (~561) of distribution transformers by 2053, with 12% (~143) experiencing significant and 47% (~561) extreme overload.

PV Curtailment Assessment

In 2028, with 33% PV penetration, some PV customers may face curtailment due to network-wide voltage rise issues. Simulations assume residential PV systems have 5 kVA inverters, which can limit export opportunities and reduce overall renewable energy penetration across the MV-LV networks.

All PV customers may experience varying degrees of curtailment. The aggregated PV curtailment increases dramatically from 15 GWh (6%) in 2023 to 140 GWh (24%) in 2053.
 This curtailment is mainly due to the 5 kVA capacity limit of residential PV inverters, with further curtailment resulting from the PV Volt-Watt inverter function.

Whole-State Extrapolation Without DOEs

This section presents findings from a comprehensive assessment of load electrification impacts on MV-LV networks across Victoria. The study evaluates voltage and thermal impacts without DOEs, providing a baseline scenario for network performance under increased electrification. We extrapolate metrics from four representative MV feeder types from WP1.5 to estimate potential state-wide implications.

Note that the following key assumptions or limitations (used by WP1.5) need to be accounted for when interpreting the results:

- 1. The population growth in the assessed network area is not considered, meaning that the number of customers remains the same throughout the horizon (2023–2053).
- 2. Network augmentation or reconfiguration t is not considered in this study. That is, the assessed MV-LV networks are assumed to remain unchanged throughout the assessment period (2023–2053). Therefore, some voltage or thermal issues identified in this impact assessment should have been addressed before escalating to a severe level. However, changes in demand and the increase in network issues can still provide valuable insights for distribution network planning.
- 3. A modern design of LV conductors (i.e., featuring lower impedance and higher ampacity) is adopted in the MV-LV network model provided by WP1.4. This modelling choice may significantly underestimate LV conductor utilization.

- 4. For short-rural and long-rural feeders, single-wire earth return (SWER) networks are not considered in the MV-LV network models provided by WP1.4. Instead, these networks are modelled using a three-phase LV network as an alternative. This approach may lead to an underestimation of voltage issues.
- 5. The size and adoption rate of DERs (i.e., PV, EVs, electrified heating/cooling, and hot water) are derived from scenario planning data provided by C4NET. Forecast assumptions in scenario planning may lead to underestimation or overestimation of the results.

Table 10 shows the whole-state extrapolation based on various metrics assessed in this project.

Detailed analysis is provided below.

Table 10. Whole-state extrapolation without DOEs.

	Who		(211 ZSS o lout DOEs)					
Year		2023	2028	2033	2038	2043	2048	2053
		Voltage	Assessm	ent				
	All ZSS	0.2%	1%	4%	6%	10%	12%	16%
Residential Voltage Rise	<50 MVA	0.2%	2%	4%	7%	10%	13%	18%
Non-Compliance	50-100 MVA	0.2%	2%	4%	7%	10%	12%	16%
	>100 MVA	0.1%	1%	3%	5%	8%	11%	13%
	All ZSS	2%	4%	9%	13%	18%	22%	26%
Residential Voltage Drop	2%	4%	9%	13%	17%	21%	27%	
Non-Compliance	50-100 MVA	2%	4%	9%	13%	18%	22%	26%
	>100 MVA	1%	3%	9%	14%	18%	23%	25%
	All ZSS	0.7%	8%	13%	15%	16%	18%	21%
% of LV Networks with	<50 MVA	0.6%	5%	9%	10%	11%	13%	18%
Voltage Rise Issues	50-100 MVA	0.7%	9%	14%	16%	18%	20%	22%
	>100 MVA	0.8%	11%	18%	21%	23%	26%	28%
	All ZSS	8%	14%	17%	20%	23%	28%	36%
% of LV Networks with	<50 MVA	5%	10%	12%	14%	17%	21%	31%
Voltage Drop Issues	50-100 MVA	9%	15%	18%	21%	25%	30%	37%
	>100 MVA	11%	20%	23%	26%	31%	38%	45%
	All ZSS	0.7%	8%	13%	15%	16%	18%	20%
% of LV Networks with	<50 MVA	0.6%	5%	9%	10%	11%	12%	16%
Both Voltage Rise & Drop Issues	50-100 MVA	0.7%	9%	14%	16%	17%	19%	21%
	>100 MVA	1%	13%	22%	26%	27%	30%	31%

			Therma	l Assessm	ent				
		All ZSS	99%	96%	86%	76%	70%	64%	62%
	<=	<50 MVA	99%	96%	89%	81%	76%	70%	67%
	100%	50-100 MVA	99%	96%	86%	75%	69%	63%	62%
		>100 MVA	100%	96%	76%	58%	51%	46%	45%
		All ZSS	0.4%	2%	5%	4%	3%	3%	3%
	100%-	<50 MVA	1%	1%	3%	3%	3%	3%	3%
	110%	50-100 MVA	0.4%	2%	5%	4%	3%	3%	2%
% of Distribution	stribution Insformers	>100 MVA	0.2%	4%	9%	5%	4%	4%	2%
Transformers with Maximum Utilisation		All ZSS	0.5%	1%	8%	15%	13%	11%	11%
	110%- 150%	<50 MVA	0.6%	2%	6%	10%	10%	11%	11%
		50-100 MVA	0.4%	1%	8%	16%	13%	11%	11%
		>100 MVA	0.1%	0.5%	15%	29%	22%	12%	12%
		All ZSS	0%	0.5%	2%	6%	14%	22%	25%
	4500/	<50 MVA	0%	0.7%	2%	6%	11%	17%	19%
	> 150%	50-100 MVA	0%	0.4%	1%	6%	14%	23%	25%
		>100 MVA	0%	0.1%	0.5%	8%	23%	38%	42%
			PV C	urtailment					
% of PV Cเ	% of PV Customers Curtailed		100%	100%	100%	100%	100%	100%	100%
Aggregate	Total P	V Curtailment (GWh)	410	793	1218	1733	2353	3123	3878
Export	7.99.094.0		6%	9%	12%	15%	18%	21%	24%

Whole-State MV-LV Voltage Assessment

By 2033, simulations assume all MV-LV networks in the state reach 36% PV penetration. Concurrently, EV adoption reaches 50%, with additional demand from heating (53% of the customers) and cooling (67% of the customers) systems. This combination triggers voltage drop issues, potentially limiting further EV and heating/cooling uptake.

- As voltage regulation devices in the MV-LV networks are operated to balance voltage
 headroom and footroom, more voltage drop issues emerge while managing PV-related
 voltage rise. This indicates that voltage regulation devices (i.e., tap positions) have reached
 their limits in maintaining customer voltages within both upper and lower boundaries.
- In 2033, of the estimated 96,092 residential customers, 4% (~96,000) are expected to face voltage rise issues and 9% (~216,000) voltage drop issues, exceeding the code requirement that voltage non-compliance should remain below 5%.

From 2033 to 2038, MV-LV networks experience significant heating electrification (from 53% to 65%), increase on cooling system adoption (from 67% to 75%), and EV uptake increase (from 50% to 86%),

while PV adoption grows modestly (from 36% to 39%). This rise in net demand exacerbates voltage issues, exceeding both voltage rise and drop limits.

• More specifically, from 2033 to 2038, voltage rise non-compliance increases by 2% to 6% 2038, while voltage drop non-compliance rises by 4% to 13% in 2038, significantly exceeding the 5% code limit. Again, voltage regulation devices (i.e., tap positions) reach their limits in maintaining customer voltages within both upper and lower boundaries. Consequently, efforts to address demand-related voltage drop issues further exacerbate voltage rise problems.

Whole-State MV-LV Thermal Assessment

By 2028, about 4% (~6,800) of distribution transformers in all state MV-LV networks is expected to experience overloading: 2% (~3,400) face minor overloading (100%-110%), 1% (~1,700) significant overload (110%-150%), and 1% (~1,700) extreme overload (>150%). Without network augmentation, this issue could escalate rapidly in subsequent years.

Without network augmentation, by 2033, 14% (~23,800) of the state distribution transformers may be overloaded, with 8% (~13,600) facing significant (110%-150%) and 2% (~3,400) extreme (>150%) overloading. By 2038, overloaded transformers increase to 24% (~40,800), with 15% (~25,500) experiencing significant and 6% (~10,200) extreme overloading, severely limiting further DER uptake.

Whole-State PV Curtailment Assessment

In 2028, with 33% PV penetration, some PV customers may face significant curtailment due to network-wide voltage rise issues. Simulations assume residential PV systems have 5 kVA inverters, which can limit export opportunities and reduce overall renewable energy penetration across the MV-LV networks.

All PV customers may experience varying degrees of curtailment. The aggregated PV curtailment increases dramatically from 410 GWh (6%) in 2023 (when the PV penetration is assumed to be 27%) to 3,878 GWh (24%) in 2053 (when the PV penetration is assumed to be 47%). This curtailment is mainly due to the 5 kVA capacity limit of residential PV inverters, with further curtailment resulting from the PV Volt-Watt inverter function.

Impact Assessment (With DOEs)

This section presents the results of the electrification impact assessment on the 6 Victorian subtransmission networks (66kV) with the use of DOEs by residential customers. To complement the analysis, an assessment of MV-LV networks connected to each subtransmission network's ZSSs is presented, using extrapolated metrics from WP1.5. This approach provides a comprehensive view of effects of the increasing load electrification across different network levels.

Before the results, it is essential to understand the key assumptions and limitations of this study:

- 1. <u>Network Models</u>: Subtransmission networks are assumed to remain the same throughout the assessment period (2023-2053), i.e., network augmentation or planned connections/expansions are not considered in this study.
- 2. <u>Voltage at Terminal Stations</u>: Voltage at terminal stations is set to a fixed value, which is specified individually for each subtransmission network.
- 3. Operational Conditions: Capacitor banks and On Load Tap Changers (OLTCs) are operated as needed to keep voltages within the required limits.
- 4. Thermal Limits: Thermal assessments are conducted for normal operational ratings.
- 5. <u>Large Loads</u>: Certain large loads, such as interconnections to other DNSPs, are assumed to maintain a constant load (as per the received models) throughout the simulated days.
- 6. <u>Generation</u>: Any generator connected to the subtransmission network is assumed to be continuously operating, with generation levels set according to the data received from WP1.4.
- 7. <u>Network Model Simplifications</u>: Subtransmission network models received from WP1.4 have simplifications transformers and OLTCs of terminal stations were not modelled that will affect the ability to manage voltages in the 66kV level.

Given these assumptions and limitations, it is crucial to interpret all results within this context.

CBTS Subtransmission Network

As shown in Table 11, the electrification impact assessment with DOEs indicates that their adoption by residential customers slightly decreases net demand on the subtransmission network from 2033 compared to the scenario without DOEs, slightly reducing the intensity of thermal issues. Voltage issues on the subtransmission network are also mitigated, but only after 2048 when 100% of residential customers have adopted DOEs for exports and imports (for level-2 EVs). The impact is more pronounced in the MV-LV networks connected to the CBTS subtransmission network, where DOEs more effectively mitigate both voltage and thermal issues, delaying the need for network augmentation. However, the effectiveness of DOEs is significantly limited due to a large portion of demand being uncontrollable (e.g., Level-1 EV charging, electrified heating/cooling).

Detailed analysis is provided below.

Terminal Station Assessment

With residential customers adopting DOEs, CBTS load is slightly reduced, starting with a 1% decrease in 2033 and reaching a 6% reduction by 2053. However, this reduction is insufficient to bring the terminal station within thermal limits for any of these years. The power factor also shows slightly improvement from 2048 onward, though not enough to meet the code requirement of 0.9.

Table 11. Impact assessment for the CBTS subtransmission network with DOEs.

		Subtransmissior (With	n Network DOEs)	c – CBTS					
	Year		2023	2028	2033	2038	2043	2048	2053
	Te	rminal Station Assessme	nt (mode	l-based s	imulatio	ns)			
Maximun	n Demand at Tern	ninal Station (MVA)	483	543	620	721	836	970	1078
Increase of I	Max. Demand at T	erminal Station (MVA)	-	12%	14%	16%	16%	16%	11%
Power Facto	or at Terminal Sta	tion for Max. Demand	0.98	0.98	0.96	0.94	0.90	0.86	0.83
		HV Voltage Assessment							
	Buses with Volta		0%	0%	0%	0%	0%	0%	0%
% of	Buses with Volta	ge Drop Issues	0%	0%	0%	0%	37%	42%	47%
	Maximum Volta	age (pu)	1.06	1.06	1.06	1.06	1.06	1.06	1.06
	Minimum Volta	ige (pu)	0.97	0.96	0.93	0.90	0.84	0.78	0.70
		HV Thermal Assessment	(model-b	ased sim	ulations)			
		<= 100%	83%	75%	33%	8%	8%	8%	8%
		100%-110%	17%	8%	33%	0%	0%	0%	0%
	% of	Avg. Overloading Duration (hr)	1.5	5	4.5	0	0	0	0
HV	Transformers with Maximum	110%-150%	0%	17%	33%	75%	50%	33%	0%
Transformers	Utilisation	Avg. Overloading Duration (hr)	0	2.5	6.8	7.7	10.3	14.5	0
		> 150%	0%	0%	0%	17%	42%	58%	92%
		Avg. Overloading Duration (hr)	0	0	0	2	6.3	8.8	8.6
		Itilisation of the orming Transformer	106%	119%	136%	155%	187%	218%	218%
		<= 100%	100%	100%	85%	77%	46%	38%	38%
		100%-110%	0%	0%	0%	0%	8%	0%	0%
	% of Lines	Avg. Overloading Duration (hr)	0	0	0	0	0.5	0	0
LIV Lines	with Maximum	110%-150%	0%	0%	15%	23%	31%	38%	15%
HV Lines	Utilisation	Avg. Overloading Duration (hr)	0	0	3	6.3	2.8	5.9	7.3
		> 150%	0%	0%	0%	0%	15%	23%	46%
		Avg. Overloading Duration (hr)	0	0	0	0	6	10.5	7.4
		Itilisation of the Performing Line	82%	98%	118%	146%	180%	228%	259%
	1	//V-LV Voltage Assessme	nt (extrap	olation c	f metric:	s)			
Reside	ntial Voltage Rise	Non-Compliance	0.3%	2%	4%	7%	8%	8%	10%
Residential Voltage Drop Non-Compliance			2%	5.1%	8%	12%	15%	20%	25%
% of LV	% of LV Networks with Voltage Rise Issues			8%	13%	14%	13%	15%	16%
% of LV	% of LV Networks with Voltage Drop Issues				19%	22%	25%	30%	34%
% of LV Netwo	orks with Both Vo	tage Rise & Drop Issues	0.8%	8%	13%	13%	13%	14%	15%

	I	MV-LV Thermal Assessme	nt (extrap	olation o	of metric	s)			
		<= 100%	100%	97%	89%	76%	73%	68%	65%
	% of Distribution 100%-110%		0.1%	2%	3%	5%	3%	4%	4%
Transformers with Maximum Utilisation 110%-150%		0.3%	0.5%	8%	16%	15%	11%	10%	
	> 150%				0.7%	3%	10%	17%	21%
		PV Curtailment Assessmer	nt (extrap	olation c	of metric	s)			
9	6 of PV Custome	rs Curtailed	100%	100%	100%	100%	100%	100%	100%
Aggregate	Total PV	Curtailment (GWh)	23	38	74	150	198	255	304
Export	% of	PV Curtailment	6%	8%	13%	24%	28%	31%	34%
	E	V Management Assessme	nt (extra	oolation	of metric	:s)			
	% of EVs Affected				9%	12%	16%	20%	24%
A	Average EV Charging Delay (h)			-	3.3	4.9	5	4.9	4.8

- This overloading is primarily driven by the adoption of electrified heating, increased adoption
 of cooling systems, as well as increased EV usage among residential customers, resulting in
 higher net demand. The impact of import DOEs on reducing demand is limited, as they are
 only applied to Level-2 EV charging, while the majority of load increase stems from electrified
 heating/cooling systems.
- The improvement in power factor and reduction of net demand may potentially decrease the required augmentation investment.

Subtransmission Voltage Assessment

With residential customers adopting DOEs, subtransmission voltages show slight improvements in 2048 (from 0.75 pu to 0.78 pu) and 2053 (from 0.67 pu to 0.7 pu), with negligible effects in other years. However, this improvement is insufficient to bring voltages within the code limit of 0.9 pu.

 The improvement on the minimum voltage from 2048 onwards is attributed to the assumption that 100% of residential customers have adopted DOEs for both exports and imports (level-2 EVs only) by this time.

Subtransmission Thermal Assessment

With residential customers adopting DOEs, ZSS transformer and 66kV line loadings are slightly reduced from 2033, decreasing both the intensity and duration of overloads. However, network upgrades remain necessary as the number of transformers and lines experiencing overutilization has not decreased, and capacity issues persist.

By 2033, export DOEs are adopted by 50% of customers with PV systems, while import
DOEs are adopted by 10% of the EVs, reaching a sufficient adoption rate to begin reducing
power flows in the network.

 This small reduction in net demand may potentially reduce or delay the need for network augmentation.

MV-LV Voltage Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the CBTS subtransmission network demonstrate improved voltage performance. Voltage rise issues are now expected to emerge from 2033 in the area, effectively delaying these problems by at least 5 years compared to the scenario without DOEs. While voltage drop issues are still expected to begin from 2028, fewer customers are expected to be affected.

- As DOEs are gradually implemented for PV and Level-2 EV customers (2028-2038), both
 voltage rise and drop non-compliance rates decrease by 2% in 2033 and 2038. This reduction
 translates to approximately 1,921 fewer affected residential customers.
- Beyond 2043, DOEs' effectiveness in reducing voltage rise non-compliance becomes more pronounced, leading to decreases of 4% (~3,844 customers) in 2043, 6% (~5,765 customers) in 2048, and 8% (~7,687 customers) in 2053 compared to the scenario without DOEs.
- Regarding voltage drop non-compliance beyond 2043, improvements become slightly more
 pronounced, leading to decreases of 3% (~2,883 customers) in 2043 and 2048, and 2%
 (~1,921 customers) in 2053 compared to the scenario without DOEs.
- However, the non-compliance rate remains above 5% from 2028, requiring additional voltage management strategies.

MV-LV Thermal Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the CBTS subtransmission network show positive impacts on thermal performance. These improvements begin in 2033, coinciding with a higher DOE adoption rate.

- From 2033 to 2053, the number of overloaded distribution transformers decreases by 3% (298) in 2033, 1% (99) in 2038, 3% (298) in 2043, 4% (397) in 2048, and 3% (298) in 2053.
- Between 2038 and 2053, the severity of overloading is also reduced, with 2% (198) to 5% (496) fewer distribution transformers exceeding 150% loading compared to the scenario without DOEs.
- These reductions in thermal problems will decrease/delay the required network augmentation investments.

PV Curtailment Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the CBTS subtransmission network initially experience a slight reduction in PV curtailment (2028). However, over time, curtailment increases, surpassing levels observed in the scenario without DOEs. This occurs because DOEs impose additional constraints on existing PV inverter functions (Volt-Watt and

Volt-Var). Moreover, the "Equal Allocation" strategy adopted in this study, which gives all flexible customers the same export limit during corresponding time intervals, does not maximize aggregate PV generation.

- All PV customers may experience varying degrees of curtailment. In 2028, aggregated PV curtailment is approximately 8% (38 GWh), lower than the 9% (29 GWh) in the scenario without DOEs. This percentage reduction occurs as a small fraction of PV systems begins adopting DOEs. However, the total curtailed energy increases because inverters are upgraded to 10 kVA in the with-DOEs scenario, unlocking greater PV potential.
- As DOE adoption increases, the "Equal Allocation" strategy's limitations become evident.
 DOE values, constrained by customers with the most severe voltage issues, negatively
 impact all customers within the same LV network. Consequently, aggregated PV curtailment
 reaches 74 GWh (13%) by 2033, significantly higher than the 45 GWh (12%) in the scenario
 without DOEs. By 2053, it reaches 304 GWh (34%), far exceeding the 142 GWh (24%)
 without DOEs. However, note that PV inverters are upgraded to 10 kVA in the with-DOEs
 scenario, unlocking greater PV potential but also increasing curtailment.

EV Management Assessment

With residential customers adopting import DOEs for Level-2 EVs from 2033, the MV-LV networks connected to the CBTS subtransmission network experience some EV charging delays. Analysis shows these delays average under 5 hours throughout the study period. Nevertheless, these delays primarily occur overnight, minimizing disruptions for EV users.

ERTS Subtransmission Network

As shown in Table 12, the electrification impact assessment with DOEs indicates that their adoption by residential customers slightly decreases net demand on the subtransmission network from 2033 compared to the scenario without DOEs, slightly reducing the intensity of thermal issues. Voltage issues on the subtransmission network are also mitigated, but only after 2038 when higher number of residential customers have adopted DOEs for exports and imports (for level-2 EVs). The impact is more pronounced in the MV-LV networks connected to the ERTS subtransmission network, where DOEs more effectively mitigate both voltage and thermal issues, delaying the need for network augmentation. However, the effectiveness of DOEs is significantly limited due to a large portion of demand being uncontrollable (e.g., Level-1 EV charging, electrified heating/cooling).

Detailed analysis is provided below.

Terminal Station Assessment

With residential customers adopting DOEs, ERTS load is slightly reduced, starting with a 1% decrease in 2033 and reaching a 14% reduction by 2053. However, this reduction is insufficient to bring the terminal station within thermal limits for any of these years. The power factor also shows slightly improvement from 2038 onward, though not enough to meet the code requirement of 0.9.

Table 12. Impact assessment for the ERTS subtransmission network with DOEs.

		Subtransmissior (With	n Network DOEs)	c – ERTS					
	Year		2023	2028	2033	2038	2043	2048	2053
	Te	rminal Station Assessme	nt (mode	l-based s	imulatio	ns)			
Maximun	n Demand at Tern	ninal Station (MVA)	504	653	896	1189	1462	1858	2032
Increase of I	Max. Demand at T	erminal Station (MVA)	-	30%	37%	33%	23%	27%	9%
Power Facto	or at Terminal Sta	tion for Max. Demand	1.00	0.97	0.90	0.84	0.80	0.74	0.71
		HV Voltage Assessment (model-ba	ased sim	ulations)			
% of	Buses with Volta	ge Rise Issues	0%	0%	0%	0%	0%	0%	0%
% of	Buses with Volta	ge Drop Issues	0%	0%	0%	0%	0%	17%	26%
	Maximum Volta	age (pu)	1.06	1.08	1.08	1.08	1.08	1.08	1.08
	Minimum Volta	ige (pu)	0.98	0.98	0.98	0.97	0.96	0.80	0.74
		HV Thermal Assessment	(model-b	ased sim	ulations)			
		<= 100%	88%	88%	71%	47%	47%	47%	47%
		100%-110%	12%	0%	6%	6%	0%	0%	0%
	% of	Avg. Overloading Duration (hr)	3	0.0	3	1	0	0	0
HV	Transformers with Maximum	110%-150%	0%	12%	12%	24%	29%	12%	0%
Transformers	Utilisation	Avg. Overloading Duration (hr)	0	4.5	5.5	3.5	10.5	17.3	0
		> 150%	0%	0%	12%	24%	24%	41%	53%
		Avg. Overloading Duration (hr)	0	0	6	5.9	13.5	10	10.2
		Itilisation of the orming Transformer	110%	137%	194%	232%	271%	303%	313%
		<= 100%	100%	100%	94%	81%	75%	75%	62%
		100%-110%	0%	0%	6%	0%	0%	0%	12%
	% of Lines	Avg. Overloading Duration (hr)	0	0	4	0	0	0	1
HV Lines	with Maximum	110%-150%	0%	0%	0%	19%	12%	0%	0%
HV Lines	Utilisation	Avg. Overloading Duration (hr)	0	0	0	5.8	5.8	0	0
		> 150%	0%	0%	0%	0%	12%	25%	25%
		Avg. Overloading Duration (hr)	0	0	0	0	1.8	5.6	9.4
	Worst	Itilisation of the Performing Line	66%	81%	106%	129%	156%	204%	207%
	MV-LV Voltage Assessm			olation c	f metric	s)			
Resider	ntial Voltage Rise	Non-Compliance	0.1%	1%	2%	3%	4%	5.1%	4%
Resider	Residential Voltage Drop Non-Compliance			3%	8%	12%	15%	20%	24%
% of LV	% of LV Networks with Voltage Rise Issues			11%	17%	18%	16%	19%	19%
% of LV	% of LV Networks with Voltage Drop Issues				26%	28%	31%	35%	39%
% of LV Netwo	orks with Both Vol	tage Rise & Drop Issues	1%	11%	17%	18%	16%	18%	18%

	I	MV-LV Thermal Assessme	nt (extrap	olation o	of metric	s)			
		<= 100%	100%	97%	85%	68%	64%	60%	56%
	% of Distribution 100%-110% Transformers with Maximum		0%	3%	4%	7%	3%	4%	4%
Transformers with Maximum Utilisation 110%-150%		0.2%	0.2%	11%	22%	19%	13%	12%	
> 150%				0.2%	0.3%	3%	13%	23%	28%
	ı	PV Curtailment Assessmer	nt (extrap	olation o	of metric	s)			
%	of PV Custome	rs Curtailed	100%	100%	100%	100%	100%	100%	100%
Aggregate	Total PV	Curtailment (GWh)	38	65	125	244	336	450	536
Export	% of	PV Curtailment	6%	8%	13%	23%	28%	33%	36%
	E	V Management Assessme	nt (extra	oolation	of metric	s)			
	% of EVs Affected				9%	13%	16%	21%	24%
Av	Average EV Charging Delay (h)			-	3.7	5.2	5.6	5.5	5.4

- This overloading is primarily driven by the adoption of electrified heating, increased adoption of cooling systems, as well as increased EV usage among residential customers, resulting in higher net demand. The impact of import DOEs on reducing demand is limited, as they are only applied to Level-2 EV charging, while the majority of load increase stems from electrified heating/cooling systems.
- The improvement in power factor and reduction of net demand may potentially decrease the required augmentation investment.

Subtransmission Voltage Assessment

With residential customers adopting DOEs, subtransmission voltages show slight improvements in 2043 (from 0.94 pu to 0.96 pu), 2048 (from 0.75 pu to 0.8 pu), and 2053 (from 0.71 pu to 0.74 pu), with negligible effects in other years. However, this improvement is insufficient to bring voltages within the code limit of 0.9 pu after 2048.

 The improvement on the minimum voltage from 2043 onwards is attributed to the assumption that 100% of residential customers have adopted export DOE and high levels of import DOE (level-2 EVs) by this time.

Subtransmission Thermal Assessment

With residential customers adopting DOEs, ZSS transformer and 66kV line loadings are slightly reduced from 2033, decreasing both the intensity and duration of overloads. However, network upgrades remain necessary as the number of transformers and lines experiencing overutilization has not decreased, and capacity issues persist.

 By 2033, export DOEs are adopted by 50% of customers with PV systems, while import DOEs are adopted by 10% of the EVs, reaching a sufficient adoption rate to begin reducing power flows in the network.

 This small reduction in net demand may potentially reduce or delay the need for network augmentation.

MV-LV Voltage Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the ERTS subtransmission network demonstrate improved voltage performance. Voltage rise issues are now projected to emerge in the area only in 2048, nearly eliminating these problems throughout the assessment period (2023-2053) when compared to the scenario without DOEs. While voltage drop issues are still expected to begin from 2033, fewer customers are expected to be affected.

- As DOEs are gradually implemented for PV and Level-2 EV customers (2028-2038), both
 voltage rise and drop non-compliance rates decrease by 1% in 2033 and 2% in 2038. This
 reduction translates to approximately 1,180 fewer affected residential customers in 2033 and
 2,360 in 2038.
- Beyond 2043, DOEs' effectiveness in reducing voltage rise non-compliance becomes more pronounced, leading to decreases of 5% (~5,900 customers) in 2043, nearly 7% (~8,260 customers) in 2048, and 10% (~11,800 customers) in 2053 compared to the scenario without DOEs.
- Regarding voltage drop non-compliance beyond 2043, improvements become slightly more pronounced, leading to decreases of 4% (~4,720 customers) in 2043, 3% (~3,540 customers) in 2048, and 2% (~2,360 customers) in 2053 compared to the scenario without DOEs.
- However, the non-compliance rate remains above 5% from 2033, requiring additional voltage management strategies.

MV-LV Thermal Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the ERTS subtransmission network show positive impacts on thermal performance. These improvements begin in 2033, coinciding with a higher DOE adoption rate.

- From 2033 to 2053, the number of overloaded distribution transformers decreases by 3% (~124) in 2033, 1% (~41) in 2038, 3% (~124) in 2043, 4% (~165) in 2048, and 2% (~83) in 2053.
- Between 2038 and 2053, the severity of overloading is also reduced, with 3% (~124) to 5% (~207) fewer distribution transformers exceeding 150% loading compared to the scenario without DOEs.
- These reductions in thermal problems will decrease/delay the required network augmentation investments.

PV Curtailment Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the ERTS subtransmission network initially experience a slight reduction in PV curtailment (2028). However, over time, curtailment increases, surpassing levels observed in the scenario without DOEs. This occurs because DOEs impose additional constraints on existing PV inverter functions (Volt-Watt and Volt-Var). Moreover, the "Equal Allocation" strategy adopted in this study, which gives all flexible customers the same export limit during corresponding time intervals, does not maximize aggregate PV generation.

- All PV customers may experience varying degrees of curtailment. In 2028, aggregated PV curtailment is approximately 8% (65 GWh), lower than the 9% (55 GWh) in the scenario without DOEs. This percentage reduction occurs as a small fraction of PV systems begins adopting DOEs. However, the total curtailed energy increases because inverters are upgraded to 10 kVA in the with-DOEs scenario, unlocking greater PV potential.
- As DOE adoption increases, the "Equal Allocation" strategy's limitations become evident. DOE values, constrained by customers with the most severe voltage issues, negatively impact all customers within the same LV network. Consequently, aggregated PV curtailment reaches 125 GWh (13%) by 2033, significantly higher than the 84 GWh (12%) in the scenario without DOEs. By 2053, it reaches 536 GWh (36%), far exceeding the 268 GWh (24%) without DOEs. However, note that PV inverters are upgraded to 10 kVA in the with-DOEs scenario, unlocking greater PV potential but also increasing curtailment.

EV Management Assessment

With residential customers adopting import DOEs for Level-2 EVs from 2033, the MV-LV networks connected to the ERTS subtransmission network experience some EV charging delays. Analysis shows these delays average under 6 hours throughout the study period. Nevertheless, these delays primarily occur overnight, minimizing disruptions for EV users.

GNTS-MBTS Subtransmission Network

As shown in Table 13, the electrification impact assessment with DOEs indicates that their adoption by residential customers slightly decreases net demand on the subtransmission network from 2028 compared to the scenario without DOEs, slightly reducing the intensity of thermal issues faced from 2048. Voltage issues on the subtransmission network are also mitigated, but only after 2038 when higher number of residential customers have adopted DOEs for exports and imports (for level-2 EVs). The impact is more pronounced in the MV-LV networks connected to the GNTS-MBTS subtransmission network, where DOEs more effectively mitigate both voltage and thermal issues, delaying the need for network augmentation. However, the effectiveness of DOEs is significantly limited due to a large portion of demand being uncontrollable (e.g., Level-1 EV charging, electrified heating/cooling).

Detailed analysis is provided below.

Table 13. Impact assessment for the GNTS-MBTS subtransmission network with DOEs.

		Subtransmission Net (With	work – G DOEs)	NTS + M	втѕ				
Year				2028	2033	2038	2043	2048	2053
	l-based s	imulatio	ns)						
Maximum Demand at GN Terminal Station (MVA)			104	133	185	239	276	320	341
Maximum I	Demand at MB Te	rminal Station (MVA)	23	28	36	44	52	59	67
Increase of M	lax. Demand at T	erminal Stations (MVA)	-	28%	39%	29%	15%	16%	7%
Power Factor	at GN Terminal S	tation for Max. Demand	0.97	0.95	0.90	0.87	0.86	0.83	0.83
Power Factor	at MB Terminal S	tation for Max. Demand	1.00	1.00	0.98	0.97	0.97	0.95	0.93
		HV Voltage Assessment (model-b	ased sim	ulations)			
% of	Buses with Volta	ge Rise Issues	0%	0%	0%	0%	0%	0%	0%
% of	Buses with Volta	ge Drop Issues	0%	0%	7%	13%	13%	20%	20%
	Maximum Volta	age (pu)	1.07	1.07	1.07	1.07	1.07	1.07	1.07
	Minimum Volta	ige (pu)	0.99	0.95	0.86	0.77	0.72	0.68	0.65
		HV Thermal Assessment	(model-b	ased sim	ulations)			
		<= 100%	95%	95%	64%	50%	50%	45%	45%
	% of Transformers with Maximum Utilisation	100%-110%	0%	0%	18%	0%	5%	5%	5%
		Avg. Overloading Duration (hr)	0	0	0.8	0	0.05	0.2	0.8
HV		110%-150%	5%	5%	14%	41%	18%	14%	23%
Transformers		Avg. Overloading Duration (hr)	1.1	0.6	0.7	3.8	2.7	2.1	1.5
		> 150%	0%	0%	5%	9%	27%	36%	27%
		Avg. Overloading Duration (hr)	0	0	0.9	1.1	2	4.4	1.8
	Max. Utilisation of the Worst Performing Transformer		123%	132%	171%	211%	183%	223%	221%
		<= 100%	100%	100%	100%	100%	100%	95%	95%
		100%-110%	0%	0%	0%	0%	0%	5%	0%
	% of Lines	Avg. Overloading Duration (hr)	0	0	0	0	0	0.7	0
HV Lines	with Maximum	110%-150%	0%	0%	0%	0%	0%	0%	5%
TIV LINES	Utilisation	Avg. Overloading Duration (hr)	0	0	0	0	0	0	0.8
		> 150%	0%	0%	0%	0%	0%	0%	0%
		Avg. Overloading Duration (hr)	0	0	0	0	0	0	0
Max. Utilisation of the Worst Performing Line		47%	55%	69%	81%	93%	107%	119%	
	ı	MV-LV Voltage Assessme	nt (extrap	olation c	of metric:	s)			
Resider	ntial Voltage Rise	Non-Compliance	0.3%	2%	4%	7%	7%	7%	18%
Residential Voltage Drop Non-Compliance			1%	4%	5.2%	7%	9%	13%	24%
% of LV Networks with Voltage Rise Issues			0.5%	3%	5%	5%	5%	7%	12%

% of LV Networks with Voltage Drop Issues			4%	6%	7%	10%	12%	16%	26%		
% of LV Networks with Both Voltage Rise & Drop Issues			0.5%	3%	5%	5%	5%	6%	10%		
	MV-LV Thermal Assessme				of metric	s)					
		<= 100%	98%	95%	92%	86%	82%	77%	75%		
% of Distribution Transformers with Maximum Utilisation	100%-110%	0.9%	1%	2%	3%	2%	4%	4%			
	110%-150%	0.7%	3%	4%	7%	8%	9%	9%			
		> 150%	0%	0.8%	3%	4%	7%	10%	12%		
PV Curtailment Assessmer			PV Curtailment Assessment (extrapolation of metrics)								
9	% of PV Customers Curtailed			100%	100%	100%	100%	100%	100%		
Aggregate	Total PV	Curtailment (GWh)	8	14	23	45	59	77	93		
Export	% of PV Curtailment		6%	7%	11%	19%	22%	25%	27%		
EV Management Assessme			nt (extra	polation	of metric	:s)					
% of EVs Affected		-	-	8%	12%	16%	20%	24%			
Average EV Charging Delay (h)		-	-	3	4.1	4.2	4.1	4.1			

Terminal Station Assessment

With residential customers adopting DOEs, GNTS load is slightly reduced, starting with a 2% decrease in 2028 and reaching a 10% reduction by 2053. However, this reduction is insufficient to bring the terminal station within thermal limits from 2048. The power factor also shows slightly improvement from 2043 onward, though not enough to meet the code requirement of 0.9.

- This overloading is primarily driven by the adoption of electrified heating, increased adoption
 of cooling systems, as well as increased EV usage among residential customers, resulting in
 higher net demand. The impact of import DOEs on reducing demand is limited, as they are
 only applied to Level-2 EV charging, while the majority of load increase stems from electrified
 heating/cooling systems.
- The improvement in power factor and reduction of net demand may potentially decrease the required augmentation investment.

Subtransmission Voltage Assessment

With residential customers adopting DOEs, subtransmission voltages show slight improvements in 2038 (from 0.76 pu to 0.77 pu), 2043 (from 0.71 pu to 0.72 pu), 2048 (from 0.66 pu to 0.68 pu), and 2053 (from 0.63 pu to 0.65 pu), with negligible effects in other years. However, this improvement is insufficient to bring voltages within the code limit of 0.9 pu after 2048.

 The improvement on the minimum voltage from 2038 onwards is attributed to the assumption that 100% of residential customers have adopted export DOE and medium levels of import DOE (level-2 EVs) by this time.

Subtransmission Thermal Assessment

With residential customers adopting DOEs, ZSS transformer and 66kV line loadings are slightly reduced from 2028, decreasing both the intensity and duration of overloads. However, network upgrades remain necessary, particularly transformers since many of them are still overutilized.

- By 2033, export DOEs are adopted by 50% of customers with PV systems, while import
 DOEs are adopted by 10% of the EVs, reaching a sufficient adoption rate to begin reducing
 power flows in the network.
- This small reduction in net demand may potentially reduce or delay the need for network augmentation.

MV-LV Voltage Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the GNTS-MBTS subtransmission network demonstrate improved voltage performance. While voltage rise and drop issues are still expected to begin from 2033, the number of affected customers is expected to be reduced.

- As DOEs are gradually implemented for PV and Level-2 EV customers (2028-2038), both
 voltage rise and drop non-compliance rates decrease by nearly 1% in 2033 and 2038. This
 reduction translates to approximately 371 fewer affected residential customers in both years.
- Beyond 2043, DOEs' effectiveness in reducing voltage rise non-compliance becomes more pronounced, leading to decreases of 3% (~1,113 customers) in 2043, 5% (~1,856 customers) in 2048, and 4% (~1,484 customers) in 2053 compared to the scenario without DOEs.
- Regarding voltage drop non-compliance beyond 2043, improvements become slightly more
 pronounced, leading to decreases of 1% (~371 customers) in 2043, 2% (~742 customers) in
 2048, and 2% (~742 customers) in 2053 compared to the scenario without DOEs.
- However, the non-compliance rate remains above 5% from 2033, requiring additional voltage management strategies.

MV-LV Thermal Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the GNTS-MBTS subtransmission network show positive impacts on thermal performance. These improvements begin in 2033, coinciding with a higher DOE adoption rate.

- From 2033 to 2053, the number of overloaded distribution transformers decreases by 2% (~158) in 2033, 2% (~158) in 2038, 4% (~316) in 2043, 5% (~395) in 2048, and 5% (~395) in 2053.
- Between 2038 and 2053, the severity of overloading is also reduced, with 1% (~79) to 4% (~316) fewer distribution transformers exceeding 150% loading compared to the scenario without DOEs.

 These reductions in thermal problems will decrease/delay the required network augmentation investments.

PV Curtailment Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the GNTS-MBTS subtransmission network initially experience a slight reduction in PV curtailment (2028). However, over time, curtailment increases, surpassing levels observed in the scenario without DOEs. This occurs because DOEs impose additional constraints on existing PV inverter functions (Volt-Watt and Volt-Var). Moreover, the "Equal Allocation" strategy adopted in this study, which gives all flexible customers the same export limit during corresponding time intervals, does not maximize aggregate PV generation.

- All PV customers may experience varying degrees of curtailment. In 2028, aggregated PV curtailment is approximately 7% (14 GWh), lower than the 9% (9 GWh) in the scenario without DOEs. This percentage reduction occurs as a small fraction of PV systems begins adopting DOEs. However, the total curtailed energy increases because inverters are upgraded to 10 kVA in the with-DOEs scenario, unlocking greater PV potential.
- As DOE adoption increases, the "Equal Allocation" strategy's limitations become evident. DOE values, constrained by customers with the most severe voltage issues, negatively impact all customers within the same LV network. Consequently, aggregated PV curtailment reaches 23 GWh (11%) by 2033, significantly higher than the 14 GWh (12%) in the scenario without DOEs. By 2053, it reaches 93 GWh (27%), far exceeding the 44 GWh (23%) without DOEs. However, note that PV inverters are upgraded to 10 kVA in the with-DOEs scenario, unlocking greater PV potential but also increasing curtailment.

EV Management Assessment

With residential customers adopting import DOEs for Level-2 EVs from 2033, the MV-LV networks connected to the GNTS-MBTS subtransmission network experience some EV charging delays. Analysis shows these delays average under 5 hours throughout the study period. Nevertheless, these delays primarily occur overnight, minimizing disruptions for EV users.

SMTS Subtransmission Network

As shown in Table 14, the electrification impact assessment with DOEs indicates that their adoption by residential customers slightly decreases net demand on the subtransmission network from 2038 compared to the scenario without DOEs, slightly reducing the intensity of thermal issues. Voltage issues on the subtransmission network are also mitigated, but only after 2048 when higher number of residential customers have adopted DOEs for exports and imports (for level-2 EVs). The impact is more pronounced in the MV-LV networks connected to the SMTS subtransmission network, where DOEs more effectively mitigate both voltage and thermal issues, delaying the need for network augmentation. However, the effectiveness of DOEs is significantly limited due to a large portion of demand being uncontrollable (e.g., Level-1 EV charging, electrified heating/cooling).

Table 14. Impact assessment for the SMTS subtransmission network with DOEs.

Subtransmission Network – SMTS (With DOEs)									
	Year		2023	2028	2033	2038	2043	2048	2053
	Te	rminal Station Assessme	nt (mode	-based s	imulatio	ns)			
Maximum Demand at Terminal Station (MVA)			274	338	431	540	627	713	776
Increase of I	Max. Demand at T	erminal Station (MVA)	-	23%	28%	25%	16%	14%	9%
Power Facto	or at Terminal Sta	tion for Max. Demand	1.00	0.99	0.97	0.95	0.93	0.93	0.91
		HV Voltage Assessment							
	Buses with Volta		0%	0%	0%	0%	0%	0%	0%
% of	Buses with Volta	ge Drop Issues	0%	0%	18%	39%	42%	42%	45%
	Maximum Volta	age (pu)	1.04	1.04	1.05	1.05	1.06	1.05	1.05
	Minimum Volta	ge (pu)	0.93	0.90	0.85	0.75	0.70	0.66	0.64
		HV Thermal Assessment	(model-b	ased sim	ulations)			
		<= 100%	95%	85%	65%	60%	60%	50%	50%
	% of Transformers with Maximum Utilisation	100%-110%	5%	5%	15%	5%	0%	10%	0%
		Avg. Overloading Duration (hr)	1.5	3	4.5	6	0	5.5	0
HV		110%-150%	0%	10%	15%	25%	5%	5%	10%
Transformers		Avg. Overloading Duration (hr)	0	2	5.7	10.1	6.5	10.5	2.5
		> 150%	0%	0%	5%	10%	35%	35%	40%
		Avg. Overloading Duration (hr)	0	0	14	12.3	7.6	12.6	13
	Max. Utilisation of the Worst Performing Transformer			118%	212%	305%	370%	414%	425%
	% of Lines	<= 100%	100%	100%	96%	84%	84%	64%	60%
		100%-110%	0%	0%	4%	4%	0%	20%	4%
		Avg. Overloading Duration (hr)	0	0	2.5	5	0	2.8	2
IIV Lines	with Maximum	110%-150%	0%	0%	0%	12%	12%	8%	24%
HV Lines	Utilisation	Avg. Overloading Duration (hr)	0	0	0	6.3	9.8	14	4
		> 150%	0%	0%	0%	0%	4%	8%	12%
		Avg. Overloading Duration (hr)	0	0	0	0	4.5	8.5	8.7
Max. Utilisation of the Worst Performing Line		66%	81%	106%	139%	156%	168%	176%	
	MV-LV Voltage Assessmen				of metric	s)			
Residential Voltage Rise Non-Compliance		0.3%	2%	4%	6%	6%	7%	11%	
Residential Voltage Drop Non-Compliance		2%	4%	7%	10%	13%	18%	24%	
% of LV Networks with Voltage Rise Issues		0.5%	5%	7%	8%	7%	9%	13%	
% of LV	% of LV Networks with Voltage Drop Issues		5%	9%	11%	13%	16%	20%	29%
% of LV Networks with Both Voltage Rise & Drop Issues		0.5%	5%	7%	8%	7%	8%	11%	

MV-LV Thermal Assessment (extrapolation of metrics)									
% of Distribution		<= 100%	99%	96%	90%	82%	78%	74%	71%
		100%-110%	0.6%	1%	2%	4%	2%	4%	4%
Transformers with Maximum Utilisation	110%-150%	0.6%	2%	6%	11%	11%	10%	10%	
		> 150%	0%	0.6%	2%	4%	8%	13%	16%
PV Curtailment Assessment (extrapolation of metrics)									
% of PV Customers Curtailed		100%	100%	100%	100%	100%	100%	100%	
Aggregate Total PV		Curtailment (GWh)	19	32	59	117	156	204	244
Export	% of PV Curtailment		6%	8%	12%	22%	26%	30%	32%
EV Management Assessment (extrapolation of metrics)									
% of EVs Affected		-	-	9%	12%	16%	20%	24%	
Average EV Charging Delay (h)		-	-	3.2	4.7	4.9	4.8	4.7	

Detailed analysis is provided below.

Terminal Station Assessment

With residential customers adopting DOEs, SMTS load is slightly reduced, starting with a 1% decrease in 2033 and reaching a 7% reduction by 2053. However, this reduction is insufficient to bring the terminal station within thermal limits for any of these years.

This overloading is primarily driven by the adoption of electrified heating, increased adoption
of cooling systems, as well as increased EV usage among residential customers, resulting in
higher net demand. The impact of import DOEs on reducing demand is limited, as they are
only applied to Level-2 EV charging, while the majority of load increase stems from electrified
heating/cooling systems.

Subtransmission Voltage Assessment

With residential customers adopting DOEs, subtransmission voltages show slight improvements in 2048 (from 0.65 pu to 0.66 pu), and 2053 (from 0.62 pu to 0.64 pu), with negligible effects in other years. However, this improvement is insufficient to bring voltages within the code limit of 0.9 pu.

 The improvement on the minimum voltage from 2048 onwards is attributed to the assumption that 100% of residential customers have adopted export DOE and high levels of import DOE (level-2 EVs) by this time.

Subtransmission Thermal Assessment

With residential customers adopting DOEs, ZSS transformer and 66kV line loadings are slightly reduced from 2033, decreasing both the intensity and duration of overloads. However, network upgrades remain necessary as the number of transformers and lines experiencing overutilization has not decreased, and capacity issues persist.

By 2033, export DOEs are adopted by 50% of customers with PV systems, while import
DOEs are adopted by 10% of the EVs, reaching a sufficient adoption rate to begin reducing
power flows in the network.

MV-LV Voltage Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the SMTS subtransmission network demonstrate improved voltage performance. Voltage rise and drop issues are still expected to begin from 2038 and 2033 respectively, but the number of affected customers is expected to be reduced.

- As DOEs are gradually implemented for PV and Level-2 EV customers (2028-2038), both
 voltage rise and drop non-compliance rates decrease by 1% in 2033 and 2% in 2038. This
 reduction translates to approximately 814 fewer affected residential customers in 2033 and
 1,628 in 2038.
- Beyond 2043, DOEs' effectiveness in reducing voltage rise non-compliance becomes more pronounced, leading to decreases of 5% (~4,071 customers) in 2043, 6% (~4,885 customers) in 2048, and 7% (~5,699 customers) in 2053 compared to the scenario without DOEs.
- Regarding voltage drop non-compliance beyond 2043, improvements become slightly more pronounced, leading to decreases of 3% (~2,443 customers) in 2043, 2% (~1,628 customers) in 2048, and 2% (~1,628 customers) in 2053 compared to the scenario without DOEs.
- However, the non-compliance rate remains above 5% from 2033, requiring additional voltage management strategies.

MV-LV Thermal Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the SMTS subtransmission network show positive impacts on thermal performance. These improvements begin in 2033, coinciding with a higher DOE adoption rate.

- From 2033 to 2053, the number of overloaded distribution transformers decreases by 2% (~196) in 2033, 2% (~196) in 2038, 3% (~294) in 2043, 5% (~490) in 2048, and 4% (~392) in 2053.
- Between 2038 and 2053, the severity of overloading is also reduced, with 1% (~98) to 4% (~392) fewer distribution transformers exceeding 150% loading compared to the scenario without DOEs.
- These reductions in thermal problems will decrease/delay the required network augmentation investments.

PV Curtailment Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the SMTS subtransmission network initially experience a slight reduction in PV curtailment (2028). However,

over time, curtailment increases, surpassing levels observed in the scenario without DOEs. This occurs because DOEs impose additional constraints on existing PV inverter functions (Volt-Watt and Volt-Var). Moreover, the "Equal Allocation" strategy adopted in this study, which gives all flexible customers the same export limit during corresponding time intervals, does not maximize aggregate PV generation.

- All PV customers may experience varying degrees of curtailment. In 2028, aggregated PV curtailment is approximately 8% (32 GWh), lower than the 9% (24 GWh) in the scenario without DOEs. This percentage reduction occurs as a small fraction of PV systems begins adopting DOEs. However, the total curtailed energy increases because inverters are upgraded to 10 kVA in the with-DOEs scenario, unlocking greater PV potential.
- As DOE adoption increases, the "Equal Allocation" strategy's limitations become evident. DOE values, constrained by customers with the most severe voltage issues, negatively impact all customers within the same LV network. Consequently, aggregated PV curtailment reaches 59 GWh (12%) by 2033, significantly higher than the 37 GWh (12%) in the scenario without DOEs. By 2053, it reaches 244 GWh (32%), far exceeding the 117 GWh (24%) without DOEs. However, note that PV inverters are upgraded to 10 kVA in the with-DOEs scenario, unlocking greater PV potential but also increasing curtailment.

EV Management Assessment

With residential customers adopting import DOEs for Level-2 EVs from 2033, the MV-LV networks connected to the SMTS subtransmission network experience some EV charging delays. Analysis shows these delays average under 5 hours throughout the study period. Nevertheless, these delays primarily occur overnight, minimizing disruptions for EV users.

TSTS Subtransmission Network

As shown in *Table 15*, the electrification impact assessment with DOEs indicates that their adoption by residential customers slightly decreases net demand on the subtransmission network from 2033 compared to the scenario without DOEs, slightly reducing the intensity of thermal issues. Voltages are not really affected, and they always within code requirements. The impact is more pronounced in the MV-LV networks connected to the TSTS subtransmission network, where DOEs more effectively mitigate both voltage and thermal issues, delaying the need for network augmentation. However, the effectiveness of DOEs is significantly limited due to a large portion of demand being uncontrollable (e.g., Level-1 EV charging, electrified heating/cooling).

Detailed analysis is provided below.

Table 15. Impact assessment for the TSTS subtransmission network with DOEs.

Subtransmission Network – TSTS (With DOEs)									
	Year		2023	2028	2033	2038	2043	2048	2053
		Terminal Station (mod	del-based	simulat	ions)				
Maximum Demand at Terminal Station (MVA)			359	433	530	647	755	861	936
Increase of I	Max. Demand at T	erminal Station (MVA)	-	20%	23%	22%	17%	14%	9%
Power Facto		tion for Max. Demand	0.99	0.99	0.97	0.97	0.96	0.95	0.95
		HV Voltage Assessment							
	Buses with Volta		0%	0%	0%	0%	0%	0%	0%
% of	Buses with Volta	ge Drop Issues	0%	0%	0%	0%	0%	0%	0%
	Maximum Volta	age (pu)	1.01	1.01	1.01	1.01	1.01	1.01	1.01
	Minimum Volta	ige (pu)	0.99	0.99	0.99	0.99	0.99	0.99	0.98
		HV Thermal Assessment	(model-b	ased sim	ulations)			
		<= 100%	100%	100%	100%	0%	0%	0%	0%
	% of Transformers with Maximum Utilisation	100%-110%	0%	0%	0%	100%	33%	0%	0%
		Avg. Overloading Duration (hr)	0	0	0	3.2	5.5	0	0
HV		110%-150%	0%	0%	0%	0%	67%	100%	100%
Transformers		Avg. Overloading Duration (hr)	0	0	0	0	4.5	7	8.3
		> 150%	0%	0%	0%	0%	0%	0%	0%
		Avg. Overloading Duration (hr)	0	0	0	0	0	0	0
	Max. Utilisation of the Worst Performing Transformer			86%	96%	108%	118%	130%	138%
	% of Lines	<= 100%	100%	100%	100%	100%	100%	100%	100%
		100%-110%	0%	0%	0%	0%	0%	0%	0%
		Avg. Overloading Duration (hr)	0	0	0	0	0	0	0
IIV Lines	with Maximum	110%-150%	0%	0%	0%	0%	0%	0%	0%
HV Lines	Utilisation	Avg. Overloading Duration (hr)	0	0	0	0	0	0	0
		> 150%	0%	0%	0%	0%	0%	0%	0%
		Avg. Overloading Duration (hr)	0	0	0	0	0	0	0
Max. Utilisation of the Worst Performing Line		52%	59%	66%	76%	84%	93%	100%	
MV-LV Voltage Assessmen				olation o	of metric	s)			
Residential Voltage Rise Non-Compliance		0.2%	1%	3%	4%	5.1%	6%	5.5%	
Residential Voltage Drop Non-Compliance		2%	4%	8%	12%	15%	20%	24%	
% of LV Networks with Voltage Rise Issues		0.8%	9%	13%	14%	13%	15%	15%	
% of LV Networks with Voltage Drop Issues		10%	17%	20%	22%	26%	31%	35%	
% of LV Networks with Both Voltage Rise & Drop Issues		0.8%	8%	13%	14%	13%	15%	15%	

MV-LV Thermal Assessment (extrapolation of metrics)									
% of Distribution		<= 100%	100%	97%	87%	73%	69%	65%	62%
		100%-110%	0%	2%	3%	6%	3%	4%	4%
Transformers with Maximum Utilisation	110%-150%	0.2%	0.2%	9%	19%	17%	12%	11%	
		> 150%	0%	0.2%	0.5%	3%	11%	19%	24%
PV Curtailment Assessment (extrapolation of metrics)									
% of PV Customers Curtailed		100%	100%	100%	100%	100%	100%	100%	
Aggregate Total PV		Curtailment (GWh)	17	28	54	106	145	193	230
Export	Percentage of PV Curtailment		6%	8%	13%	23%	28%	32%	35%
EV Management Assessment (extrapolation of metrics)									
% of EVs Affected		-	-	9%	12%	16%	20%	24%	
Average EV Charging Delay (h)		-	-	3.5	5.1	5.4	5.4	5.3	

Terminal Station Assessment

With residential customers adopting DOEs, TSTS load is slightly reduced, starting with a 2% decrease in 2033, and reaching a 7% reduction by 2053. The net demand reduction in 2033 was enough to bring it within its thermal capacity, delaying upgrade investments by 5 years. However, for the following years the reduction is insufficient to bring the terminal station within thermal limits. The power factor is not affected, but it is always within limits.

- This overloading is primarily driven by the adoption of electrified heating, increased adoption
 of cooling systems, as well as increased EV usage among residential customers, resulting in
 higher net demand. The impact of import DOEs on reducing demand is limited, as they are
 only applied to Level-2 EV charging, while the majority of load increase stems from electrified
 heating/cooling systems.
- The reduction of net demand has delayed augmentation investments by 5 years, and it may also decrease the required augmentation investment.

Subtransmission Voltage Assessment

With residential customers adopting DOEs, subtransmission voltages stayed the same as without DOEs.

• This happens because in the received model most of the loads are connected directly to the terminal station.

Subtransmission Thermal Assessment

With residential customers adopting DOEs, ZSS transformer and 66kV line loadings are slightly reduced from 2038, decreasing both the intensity and duration of overloads. With the demand decrease, lines are within their capacity limits throughout the assessment period (2023-2053). However, upgrades on the ZSS transformers remain necessary.

- By 2033, export DOEs are adopted by 50% of customers with PV systems, while import
 DOEs are adopted by 10% of the EVs, reaching a sufficient adoption rate to begin reducing
 power flows in the network.
- This small reduction in net demand is expected to reduce the network augmentation investment.

MV-LV Voltage Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the TSTS subtransmission network demonstrate improved voltage performance. Voltage rise issues are now expected to emerge from 2043 in the area, effectively delaying these problems by at least 5 years compared to the scenario without DOEs. While voltage drop issues are still expected to begin from 2033, fewer customers are expected to be affected.

- As DOEs are gradually implemented for PV and Level-2 EV customers (2028-2038), both
 voltage rise and drop non-compliance rates decrease by 1% in 2033 and 2% in 2038. This
 reduction translates to approximately 689 fewer affected residential customers in 2033 and
 1,376 in 2038.
- Beyond 2043, DOEs' effectiveness in reducing voltage rise non-compliance becomes more pronounced, leading to decreases of nearly 5% (~3,439 customers) in 2043, 6% (~4,127 customers) in 2048, and nearly 10% (~6,878 customers) in 2053 compared to the scenario without DOEs.
- Regarding voltage drop non-compliance beyond 2043, improvements become slightly more pronounced, leading to decreases of 3% (~2,063 customers) in 2043, 3% (~2,063 customers) in 2048, and 2% (~1,375 customers) in 2053 compared to the scenario without DOEs.
- However, the non-compliance rate remains above 5% from 2033, requiring additional voltage management strategies.

MV-LV Thermal Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the TSTS subtransmission network show positive impacts on thermal performance. These improvements begin in 2033, coinciding with a higher DOE adoption rate.

- From 2033 to 2053, the number of overloaded distribution transformers decreases by 3% (~99) in 2033, 1% (~33) in 2038, 3% (~99) in 2043, 4% (~132) in 2048, and 3% (~99) in 2053.
- Between 2038 and 2053, the severity of overloading is also reduced, with 2% (~66) to 5% (~165) fewer distribution transformers exceeding 150% loading compared to the scenario without DOEs.
- These reductions in thermal problems will decrease/delay the required network augmentation investments.

PV Curtailment Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the TSTS subtransmission network initially experience a slight reduction in PV curtailment (2028). However, over time, curtailment increases, surpassing levels observed in the scenario without DOEs. This occurs because DOEs impose additional constraints on existing PV inverter functions (Volt-Watt and Volt-Var). Moreover, the "Equal Allocation" strategy adopted in this study, which gives all flexible customers the same export limit during corresponding time intervals, does not maximize aggregate PV generation.

- All PV customers may experience varying degrees of curtailment. In 2028, aggregated PV curtailment is approximately 8% (28 GWh), lower than the 9% (23 GWh) in the scenario without DOEs. This percentage reduction occurs as a small fraction of PV systems begins adopting DOEs. However, the total curtailed energy increases because inverters are upgraded to 10 kVA in the with-DOEs scenario, unlocking greater PV potential.
- As DOE adoption increases, the "Equal Allocation" strategy's limitations become evident. DOE values, constrained by customers with the most severe voltage issues, negatively impact all customers within the same LV network. Consequently, aggregated PV curtailment reaches 54 GWh (13%) by 2033, significantly higher than the 35 GWh (12%) in the scenario without DOEs. By 2053, it reaches 230 GWh (35%), far exceeding the 113 GWh (24%) without DOEs. However, note that PV inverters are upgraded to 10 kVA in the with-DOEs scenario, unlocking greater PV potential but also increasing curtailment.

EV Management Assessment

With residential customers adopting import DOEs for Level-2 EVs from 2033, the MV-LV networks connected to the TSTS subtransmission network experience some EV charging delays. Analysis shows these delays average under 6 hours throughout the study period. Nevertheless, these delays primarily occur overnight, minimizing disruptions for EV users.

TTS Subtransmission Network

As shown in Table 16, the electrification impact assessment with DOEs indicates that their adoption by residential customers slightly decreases net demand on the subtransmission network from 2033 compared to the scenario without DOEs, slightly reducing the intensity of thermal issues. Voltage issues on the subtransmission network are also mitigated, but only after 2038 when higher number of residential customers have adopted DOEs for exports and imports (for level-2 EVs). The impact is more pronounced in the MV-LV networks connected to the TTS subtransmission network, where DOEs more effectively mitigate both voltage and thermal issues, delaying the need for network augmentation. However, the effectiveness of DOEs is significantly limited due to a large portion of demand being uncontrollable (e.g., Level-1 EV charging, electrified heating/cooling).

Detailed analysis is provided below.

Table 16. Impact assessment for the TTS subtransmission network with DOEs.

		Subtransmissio (With	n Networ DOEs)	k – TTS					
	Year		2023	2028	2033	2038	2043	2048	2053
	Te	rminal Station Assessme	nt (mode	-based s	imulatio	ns)			
Maximun	n Demand at Tern	ninal Station (MVA)	254	340	468	626	785	918	1013
Increase of I	Max. Demand at T	erminal Station (MVA)	-	34%	38%	34%	25%	17%	10%
Power Facto		tion for Max. Demand	1.00	0.98	0.95	0.92	0.87	0.84	0.81
0/ - 5		HV Voltage Assessment			,		00/	20/	00/
	Buses with Volta		0%	0%	0%	0%	0%	0%	0%
% of	Buses with Volta	ge Drop Issues	0%	0%	0%	0%	8%	54%	54%
	Maximum Volta	age (pu)	1.02	1.02	1.02	1.02	1.02	1.02	1.02
	Minimum Volta	ige (pu)	0.99	0.97	0.95	0.93	0.82	0.78	0.75
		HV Thermal Assessment	(model-b	ased sim	ulations)			
		<= 100%	100%	43%	14%	14%	0%	0%	0%
		100%-110%	0%	14%	0%	0%	0%	0%	0%
	% of Transformers	Avg. Overloading Duration (hr)	0	1.5	0	0	0	0	0
HV	with Maximum	110%-150%	0%	43%	86%	29%	14%	0%	0%
Transformers	Utilisation	Avg. Overloading Duration (hr)	0	1.5	7.4	11.3	17.0	0	0
		> 150%	0%	0%	0%	57%	86%	100%	100%
		Avg. Overloading Duration (hr)	0	0	0	7.8	11.6	15.1	16.9
		Itilisation of the orming Transformer	92%	114%	149%	198%	232%	252%	273%
		<= 100%	100%	100%	90%	80%	60%	60%	60%
		100%-110%	0%	0%	0%	0%	0%	0%	0%
	% of Lines	Avg. Overloading Duration (hr)	0	0	0	0	0	0	0
HV Lines	with Maximum	110%-150%	0%	0%	10%	20%	20%	20%	0%
HV Lines	Utilisation	Avg. Overloading Duration (hr)	0	0	1.5	7.3	1.0	8.5	0
		> 150%	0%	0%	0%	0%	20%	20%	40%
		Avg. Overloading Duration (hr)	0	0	0	0	4.5	11.8	7.9
		Itilisation of the Performing Line	65%	85%	112%	147%	186%	214%	229%
	Λ	MV-LV Voltage Assessme	nt (extrap	olation c	f metric:	s)			
Reside	ntial Voltage Rise	Non-Compliance	0.1%	0.8%	2%	2%	3%	4%	3%
Resider	ntial Voltage Drop	Non-Compliance	1%	3%	7%	11%	15%	19%	23%
% of LV	Networks with Vo	oltage Rise Issues	1%	13%	20%	21%	19%	22%	21%
% of LV	Networks with Vo	oltage Drop Issues	15%	26%	31%	32%	37%	38%	43%
% of LV Netwo	orks with Both Vol	tage Rise & Drop Issues	1%	13%	20%	21%	19%	21%	21%

		MV-LV Thermal Assessme	nt (extrap	olation o	of metric	s)			
		<= 100%	100%	96%	78%	54%	48%	45%	41%
% of Dis	tribution with Maximum	100%-110%	0%	4%	6%	10%	5%	5%	4%
Utilis		110%-150%	0%	0%	16%	32%	28%	17%	15%
		> 150%	0%	0%	0%	4%	19%	33%	40%
		PV Curtailment Assessmer	nt (extrap	olation o	of metric	s)			
9/	6 of PV Custome	rs Curtailed	100%	100%	100%	100%	100%	100%	100%
Aggregate	Total PV	Curtailment (GWh)	20	34	63	122	170	232	276
Export	% of	PV Curtailment	6%	8%	13%	22%	27%	33%	35%
	E	V Management Assessme	nt (extra	polation	of metric	:s)			
	% of EVs Af	fected	-	-	9%	13%	16%	21%	24%
A	erage EV Charg	ing Delay (h)	-	-	3.8	5.2	5.7	5.7	5.5

Terminal Station Assessment

With residential customers adopting DOEs, TTS load is slightly reduced, starting with a 1% decrease in 2033 and reaching a 10% reduction by 2053. However, this reduction is insufficient to bring the terminal station within thermal limits for any of these years. The power factor also shows slightly improvement from 2048 onward, though not enough to meet the code requirement of 0.9.

- This overloading is primarily driven by the adoption of electrified heating, increased adoption
 of cooling systems, as well as increased EV usage among residential customers, resulting in
 higher net demand. The impact of import DOEs on reducing demand is limited, as they are
 only applied to Level-2 EV charging, while the majority of load increase stems from electrified
 heating/cooling systems.
- The improvement in power factor and reduction of net demand may potentially decrease the required augmentation investment.

Subtransmission Voltage Assessment

With residential customers adopting DOEs, subtransmission voltages show slight improvements in 2038 (from 0.92 pu to 0.93 pu), 2048 (from 0.76 pu to 0.78 pu), and 2053 (from 0.73 pu to 0.75 pu), with negligible effects in other years. The small improvement in voltages in 2038 is sufficient to eliminate voltage issues for that year, potentially delaying necessary upgrades by 5 years. However, voltage improvements are insufficient to bring voltages within the code limit of 0.9 pu after 2043.

 The improvement on the minimum voltage from 2038 onwards is attributed to the assumption that 100% of residential customers have adopted export DOE and moderate levels of import DOE (level-2 EVs) by this time.

Subtransmission Thermal Assessment

With residential customers adopting DOEs, ZSS transformer and 66kV line loadings are slightly reduced from 2033, decreasing both the intensity and duration of overloads. However, network upgrades remain necessary as the number of transformers and lines experiencing overutilization has not decreased, and capacity issues persist.

- By 2033, export DOEs are adopted by 50% of customers with PV systems, while import
 DOEs are adopted by 10% of the EVs, reaching a sufficient adoption rate to begin reducing
 power flows in the network.
- This small reduction in net demand may potentially reduce or delay the need for network augmentation.

MV-LV Voltage Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the TTS subtransmission network demonstrate improved voltage performance. Voltage rise issues are not expected anymore throughout the assessment period (2023-2053) when compared to the scenario without DOEs. While voltage drop issues are still expected to begin from 2033, fewer customers are expected to be affected.

- As DOEs are gradually implemented for PV and Level-2 EV customers (2028-2038), voltage
 rise non-compliance rate decrease by 1% in 2033 and 2% in 2038, resulting in approximately
 809 fewer affected residential customers in 2033 and 1,618 in 2038. While voltage drop noncompliance rate decrease by 2% in 2033 and 2038, resulting in approximately 1,618 fewer
 affected residential customers in each year.
- Beyond 2043, DOEs' effectiveness in reducing voltage rise non-compliance becomes more pronounced, leading to decreases of 5% (~4,044 customers) in 2043, 7% (~5,662 customers) in 2048, and 9% (~7,279 customers) in 2053 compared to the scenario without DOEs.
- Regarding voltage drop non-compliance beyond 2043, improvements become slightly more pronounced, leading to decreases of 3% (~2,426 customers) in 2043, 3% (~2,426 customers) in 2048, and 1% (~809 customers) in 2053 compared to the scenario without DOEs.
- However, the non-compliance rate remains above 5% from 2033, requiring additional voltage management strategies.

MV-LV Thermal Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the TTS subtransmission network show positive impacts on thermal performance. These improvements begin in 2033, coinciding with a higher DOE adoption rate.

From 2033 to 2053, the number of overloaded distribution transformers decreases by 5%
 (~60) in 2033, 1% (~12) in 2038, 2% (~24) in 2043, 4% (~48) in 2048, and 1% (~12) in 2053.

- Between 2038 and 2053, the severity of overloading is also reduced, with 4% (~48) to 7% (~83) fewer distribution transformers exceeding 150% loading compared to the scenario without DOEs.
- These reductions in thermal problems will decrease/delay the required network augmentation investments.

PV Curtailment Assessment

With residential customers adopting DOEs, the MV-LV networks connected to the TTS subtransmission network initially experience a slight reduction in PV curtailment (2028). However, over time, curtailment increases, surpassing levels observed in the scenario without DOEs. This occurs because DOEs impose additional constraints on existing PV inverter functions (Volt-Watt and Volt-Var). Moreover, the "Equal Allocation" strategy adopted in this study, which gives all flexible customers the same export limit during corresponding time intervals, does not maximize aggregate PV generation.

- All PV customers may experience varying degrees of curtailment. In 2028, aggregated PV curtailment is approximately 8% (34 GWh), lower than the 9% (29 GWh) in the scenario without DOEs. This percentage reduction occurs as a small fraction of PV systems begins adopting DOEs. However, the total curtailed energy increases because inverters are upgraded to 10 kVA in the with-DOEs scenario, unlocking greater PV potential.
- As DOE adoption increases, the "Equal Allocation" strategy's limitations become evident. DOE values, constrained by customers with the most severe voltage issues, negatively impact all customers within the same LV network. Consequently, aggregated PV curtailment reaches 63 GWh (13%) by 2033, significantly higher than the 44 GWh (12%) in the scenario without DOEs. By 2053, it reaches 276 GWh (35%), far exceeding the 140 GWh (24%) without DOEs. However, note that PV inverters are upgraded to 10 kVA in the with-DOEs scenario, unlocking greater PV potential but also increasing curtailment.

EV Management Assessment

With residential customers adopting import DOEs for Level-2 EVs from 2033, the MV-LV networks connected to the TTS subtransmission network experience some EV charging delays. Analysis shows these delays average under 6 hours throughout the study period. Nevertheless, these delays primarily occur overnight, minimizing disruptions for EV users.

Whole-State Extrapolation With DOEs

This section presents findings from a comprehensive assessment of load electrification impacts on MV-LV networks across Victoria. The study evaluates voltage and thermal impacts with DOEs, providing an alternative, and more likely, scenario for network performance under increased electrification. We extrapolate metrics from four representative MV feeder types from WP1.5 to estimate potential state-wide implications.

Note that the following key assumptions or limitations (used by WP1.5) need to be accounted for when interpreting the results:

- 1. The population growth in the assessed network area is not considered, meaning that the number of customers remains the same throughout the horizon (2023–2053).
- 2. Network augmentation or reconfiguration t is not considered in this study. That is, the assessed MV-LV networks are assumed to remain unchanged throughout the assessment period (2023–2053). Therefore, some voltage or thermal issues identified in this impact assessment should have been addressed before escalating to a severe level. However, changes in demand and the increase in network issues can still provide valuable insights for distribution network planning.
- 3. A modern design of LV conductors (i.e., featuring lower impedance and higher ampacity) is adopted in the MV-LV network model provided by WP1.4. This modelling choice may significantly underestimate LV conductor utilization.
- 4. For short-rural and long-rural feeders, single-wire earth return (SWER) networks are not considered in the MV-LV network models provided by WP1.4. Instead, these networks are modelled using a three-phase LV network as an alternative. This approach may lead to an underestimation of voltage issues.
- 5. The size and adoption rate of DERs (i.e., PV, EVs, electrified heating/cooling, and hot water) are derived from scenario planning data provided by C4NET. Forecast assumptions in scenario planning may lead to underestimation or overestimation of the results.

Table 17 shows the whole-state extrapolation based on various metrics assessed in this project with the use of DOEs by residential customers.

Detailed analysis is provided below.

Whole-State MV-LV Voltage Assessment

With residential customers adopting DOEs, the state MV-LV networks has shown positive impacts on voltage performance. Voltage rise issues are now expected to start from 2043 across the state, effectively delaying these problems by at least 5 years compared to the scenario without DOEs. While voltage drop issues are still anticipated to begin from 2033.

- As DOEs are gradually implemented for PV and Level-2 EV customers (2028-2038), voltage
 rise non-compliance rates decrease by 1% in 2033 and 2% by 2038. This reduction translates
 to approximately 24,000 and 48,000 fewer residential customers affected by overvoltage in
 each respective year.
- Regarding voltage drop non-compliance rates, they decrease by 2% in both 2033 and 2038.
 This reduction translates to approximately 48,000 fewer residential customers affected by undervoltage issues.
- Beyond 2043, DOEs' effectiveness in reducing voltage rise non-compliance becomes more pronounced, leading to decreases of 5% (~120,000 customers) in 2043, 6% (~144,000

customers) in 2048, and 9% (~216,000 customers) in 2053 compared to the scenario without DOEs.

- Regarding voltage drop non-compliance beyond 2043, improvements become slightly more
 pronounced, leading to decreases of 4% (~96,000 customers) in 2043, 3% (~72,000
 customers) in 2048, and 2% (~48,000 customers) in 2053 compared to the scenario without
 DOEs.
- However, the non-compliance rate remains above 5% beyond 2033, requiring additional DER management strategies.

Table 17. Whole-state extrapolation with DOEs.

	Who	ole-State (2 (wit	211 ZSS o h DOEs)	ut of 246)				
Year		2023	2028	2033	2038	2043	2048	2053
		Voltage	Assessme	ent				
	All ZSS	0.2%	1%	3%	4%	5.1%	6%	7%
Residential Voltage Rise	<50 MVA	0.2%	1%	3%	5.1%	6%	6%	10%
Non-Compliance	50-100 MVA	0.2%	1%	3%	5%	5.4%	6%	7%
	>100 MVA	0.1%	0.9%	2%	3%	4%	5%	3%
	All ZSS	2%	4%	7%	11%	14%	19%	24%
Residential Voltage Drop	<50 MVA	2%	4%	7%	11%	14%	19%	25%
Non-Compliance	50-100 MVA	2%	4%	7%	11%	14%	19%	24%
	>100 MVA	1%	3%	7%	11%	15%	20%	23%
	All ZSS	0.7%	7%	11%	11%	11%	13%	15%
% of LV Networks with	<50 MVA	0.6%	5%	7%	8%	7%	9%	14%
Voltage Rise Issues	50-100 MVA	0.7%	8%	12%	12%	11%	13%	16%
	>100 MVA	0.8%	10%	15%	16%	14%	17%	19%
	All ZSS	8%	14%	16%	18%	21%	25%	32%
% of LV Networks with	<50 MVA	5%	9%	11%	13%	16%	20%	29%
Voltage Drop Issues	50-100 MVA	9%	15%	17%	19%	23%	27%	33%
	>100 MVA	11%	19%	23%	24%	29%	30%	38%
	All ZSS	0.7%	7%	11%	11%	11%	12%	14%
% of LV Networks with	<50 MVA	0.6%	5%	7%	8%	7%	8%	12%
Both Voltage Rise & Drop Issues	50-100 MVA	0.7%	7%	12%	12%	11%	13%	15%
	>100 MVA	1%	11%	18%	19%	17%	19%	20%

			Therma	Assessm	ent				
		All ZSS	99%	96%	89%	77%	73%	69%	66%
	<=	<50 MVA	99%	96%	91%	83%	80%	75%	72%
	100%	50-100 MVA	99%	96%	88%	76%	73%	68%	65%
		>100 MVA	100%	96%	81%	59%	54%	50%	46%
		All ZSS	0.4%	2%	3%	5%	3%	4%	4%
	100%-	<50 MVA	0.7%	1%	2%	4%	2%	4%	4%
	110%	50-100 MVA	0.4%	2%	3%	5%	3%	4%	4%
% of Distribution		>100 MVA	0.2%	3%	5%	9%	4%	5%	4%
Transformers with Maximum Utilisation		All ZSS	0.5%	1%	7%	14%	14%	11%	11%
Ottilisation	110%-	<50 MVA	0.6%	2%	5%	9%	10%	9%	10%
	150%	50-100 MVA	0.4%	1%	8%	15%	14%	11%	11%
		>100 MVA	0.1%	0.5%	14%	28%	25%	16%	14%
		All ZSS	0%	0.5%	1%	4%	10%	16%	20%
	45004	<50 MVA	0%	0.7%	2%	4%	8%	12%	14%
	> 150%	50-100 MVA	0%	0.4%	1%	4%	10%	17%	20%
		>100 MVA	0%	0.1%	0.5%	4%	17%	30%	35%
			PV C	urtailment					
% of PV C	ustomers (Curtailed	100%	100%	100%	100%	100%	100%	100%
Aggregate	Total P	V Curtailment (GWh)	581	983	1865	3656	4974	6600	7872
Export	% of P	V Curtailment	6%	8%	13%	22%	27%	32%	34%
			EV M	anagemen	t				
Percentag	ge of EVs A	Affected	-	-	9%	13%	16%	20%	24%
Average EV	Charging	Delay (h)	-	-	3.5	5	5.3	5.2	5.1

MV-LV Thermal Assessment

With residential customers adopting DOEs, the state MV-LV networks has shown positive impacts on thermal performance. These improvements begin in 2033, coinciding with a higher DOE adoption rate.

- From 2033 to 2053, the number of overloaded distribution transformers decreases by 3% (~5,100) in 2033, 1% (~1,700) in 2038, 3% (~5,100) in 2043, 5% (~8,500) in 2048, and 4% (~6,800) in 2053.
- Between 2038 and 2053, the severity of overloading is also reduced, with 2% (~3,400) to 5% (~8,500) fewer distribution transformers exceeding 150% loading compared to the scenario without DOEs.

 These reductions in thermal problems will decrease considerably the required network augmentation investments in the whole state.

PV Curtailment Assessment

With residential customers adopting DOEs, the state MV-LV networks initially experience a slight reduction in PV curtailment (2028). However, over time, curtailment increases, surpassing levels observed in the scenario without DOEs. This occurs because DOEs impose additional constraints on existing PV inverter functions (Volt-Watt and Volt-Var). Moreover, the "Equal Allocation" strategy adopted in this study, which gives all flexible customers the same export limit during corresponding time intervals, does not maximize aggregate PV generation.

- All PV customers may experience varying degrees of curtailment. In 2028, aggregated PV curtailment is approximately 8% (~983 GWh), lower than the 9% (~793 GWh) in the scenario without DOEs. This percentual reduction occurs as a small fraction of PV systems begins adopting DOEs, with their inverters upgraded to 10 kVA, unlocking greater PV potential.
- As DOE adoption increases, the "Equal Allocation" strategy's limitations become evident. DOE values, constrained by customers with the most severe voltage issues, negatively impact all customers within the same LV network. Consequently, aggregated PV curtailment reaches 1,865 GWh (13%) by 2033 (when PV penetration is assumed to be 36%), higher than the 1,218 GWh (12%) in the scenario without DOEs. By 2053, when PV penetration is assumed to be 47%, it reaches 7,872 GWh (34%), far exceeding the 3,878 GWh (24%) without DOEs. However, note that PV inverters are upgraded to 10 kVA in the DOEs scenario, unlocking greater PV potential but also increasing curtailment.

EV Management Assessment

With residential customers adopting import DOEs for Level-2 EVs from 2033, the state MV-LV networks experience some EV charging delays. Analysis shows these delays average around 5 hours throughout the study period. Nevertheless, these delays primarily occur overnight, minimizing disruptions for EV users.

4. Key Findings

Based on DER scenarios developed by C4NET in collaboration with participating DNSPs, and assuming no population growth or network upgrades (e.g., network augmentation), the key findings from the electrification impact assessment for the whole state and subtransmission networks are as follows, for both scenarios, "without DOE" and "with DOE".

Whole-State Extrapolation

MV-LV Voltage Assessment

- 1. In the next decade (starting from 2023), PV penetration is expected to grow steadily, and voltage issues can emerge as a limiting factor for further PV uptake. Typically for those ZSS with MV-LV networks less robust to voltage changes (i.e., ZSS with many urban and short-rural feeders).
- 2. From 2033, the PV uptake slows down and net demand rises significantly due to the presence of increasing EV adoption and residential electrification (i.e., heating/cooling and hot water systems), which further exacerbate voltage issues. Note that since the voltage regulation devices in this study are operated to ensure equal voltage headroom and footroom, more voltage drop issues have emerged as a result of managing PV-related voltage rise issues. This indicates that voltage regulation devices (i.e., tap positions) have been exhausted to maintain customer voltages within both upper and lower limits.
- 3. The adoption of export DOEs by residential customers effectively mitigate voltage rise issues caused by PV export once applied to all residential PV customers (by 2038). However, since PV inverters functions (i.e., Volt-Watt and Volt-Var) already enforce PV curtailment to help regulate voltages in the scenario without DOEs, the additional benefits of export DOEs may be limited.
- 4. Since import DOEs are applied only to Level-2 EV charging, only a small fraction of the demand is managed (up to 30%). Over time, the demand from residential electrification (i.e., heating/cooling and hot water systems) becomes significant, resulting in more voltage drops and heavy asset utilisation. Consequently, managing Level-2 EV demand alone is insufficient to resolve both voltage and thermal I issues.

MV-LV Thermal Assessment

- By 2028, about 4% (~6,800, out of the estimated 170, 000) of state distribution transformers are expected to experience overloading, escalating to 14% (~23,800) by 2033, and 24% (~40,800) by 2038. This rapid increase in overloaded transformers could severely limit further DER uptake without network augmentation.
- 2. The adoption of import DOEs by residential customers shows positive impacts on thermal performance of distribution transformer from 2033 onwards. The number of overloaded transformers decreases by 1% (~1,700) to 5% (~8,500) annually between 2033 and 2053, with 2% (~3,400) to 5% (~8,500) fewer transformers experiencing extreme overloading (>150%).

These improvements will significantly reduce required network augmentation investments across the state.

PV Curtailment Assessment

- For the scenario without DOEs, PV curtailment increases from 410 GWh (6%) in 2023 to 3,878 GWh (24%) in 2053 as PV penetration grows from 27% to 47%. This curtailment is mainly due to 5 kVA inverter capacity limits and Volt-Watt function constraints, limiting renewable energy penetration across MV-LV networks.
- 2. For the scenario with DOEs, initially, export DOEs reduce curtailment slightly (8% or 983 GWh in 2028, compared to 9% or 793 GWh without DOEs). However, as export DOE adoption increases, curtailment surpasses the without-DOEs scenario due to additional constraints and the "Equal Allocation" strategy. By 2033, curtailment reaches 1,865 GWh (13%), and by 2053, it reaches 7,872 GWh (34%). Note that PV inverters are upgraded to 10 kVA in the DOEs scenario, unlocking greater PV potential but also increasing curtailment.

EV Management Assessment

With residential customers adopting import DOEs for Level-2 EVs from 2033, Victorian residential
customers should expect some EV charging delays. Analysis shows these delays average around
5 hours throughout the study period. Nevertheless, these delays primarily occur overnight,
minimizing disruptions for EV users.

Impact Assessment of Subtransmission Networks

Terminal Station Assessment

- 1. Terminal stations are expected to face severe overloading issues between 2033 and 2048, with 2033 peak utilization rates of 119-146% and overutilization periods of 8-14 hours during peak demand days. ERTS and TTS are the earliest to face significant overloading by 2033, reaching 133% and 146% utilization respectively. By 2053, the situation worsens across all networks, with overloading reaching 131-345% and overutilization periods extending to 14-24 hours. ERTS and TTS show the most severe projections, potentially exceeding 340% utilization, while GNTS shows the least severe overloading at 131% by 2053, though still critical.
- 2. Terminal stations are expected to have diverse power factor performance from 2023 to 2053. Three stations (MBTS, SMTS, and TSTS) maintain power factors higher than the 0.9 statutory limit throughout the entire period. Four others face challenges: ERTS and GNTS drop below 0.9 by 2038, TTS by 2043, and CBTS by 2048. These power factor issues are projected to worsen over time for these four stations.
- 3. The adoption of import DOEs by residential customers consistently reduces load across all terminal stations, with impacts ranging from less than 1% in 2023 to 14% by 2053. ERTS shows the most significant reduction (14%, 318 MVA) by 2053. However, despite these reductions, all six terminal stations continue to exceed their thermal limits in the same years as in the scenario

- without DOEs. TSTS experiences a brief respite in 2033, with load reduction bringing it within thermal capacity (531 MVA) and potentially delaying upgrades by 5 years, but this benefit is short-lived. While import DOEs provide some load relief, they are insufficient to resolve the long-term thermal capacity issues or significantly delay the need for upgrades at these terminal stations.
- 4. The adoption of import DOEs by residential customers results in slight power factor improvements at terminal stations. GNTS shows improvement from 2043, while CBTS, ERTS, and TTS improve from 2048 onward. However, compared to the scenario without DOEs, these improvements are insufficient to bring any station into compliance with the statutory power factor limit (≥0.9).

Subtransmission Voltage Assessment

- 1. Subtransmission networks are expected to face varying degrees of undervoltage issues projected to occur between 2033 and 2048, with TSTS being the only exception, showing no voltage issues throughout the assessment period (2023-2053). The percentage of affected buses ranges from 7% in GNTS-MBTS by 2033 to 39% in SMTS by 2038. These undervoltage problems primarily affect the 66kV networks, but some 22kV networks (secondary of ZSSs) are also impacted, indicating that OLTCs at both terminal stations and ZSSs, as well as capacitor banks, have reached their operational limits in maintaining voltage levels. The issues generally occur during early morning and peak periods (morning and evening) of the worst day (winter peak), attributed to high loading conditions caused by electrified heating systems, increased adoption of cooling systems, and rising EV usage by residential customers.
- 2. The adoption of import DOEs by residential customers generally results in slight improvements to subtransmission voltages, with effects becoming noticeable between 2038 and 2053, depending on the network. However, these improvements are largely insufficient to bring voltages within statutory limits for most networks, when compared to the scenario without DOEs. The TTS subtransmission network stands out as an exception, where the small voltage improvement in 2038 is enough to eliminate voltage issues for that year, potentially delaying necessary upgrades by 5 years. Nevertheless, even for TTS, the improvements are not sufficient to maintain voltages within statutory limits after 2043.

Subtransmission Thermal Assessment

- ZSS transformers across all subtransmission networks are expected to face escalating overloading issues. ERTS, SMTS, and TTS encounter concerning problems by 2033, CBTS and GNTS-MBTS by 2038, and TSTS by 2048. By 2053, overloading becomes critical, with 36% (GNTS-MBTS) to 100% (TTS) of transformers exceeding 150% utilization. Peak rates reach up to 441% (SMTS), with some networks experiencing overloads for an average of 11 hours during peak demand days.
- 2. Subtransmission networks are expected to face varying degrees of 66kV line overloading issues between 2038 and 2053. Four networks (CBTS, ERTS, SMTS, and TTS) face significant challenges, while GNTS-MBTS and TSTS are expected to remain without issues throughout the

assessment period (2023-2053). By 2038, the affected networks show 10-23% of lines experiencing significant overload (110-150%) for 5-7 hours on average, with some lines in TTS already facing extreme overload (>150%). The situation worsens by 2053, with CBTS experiencing the most severe issues (62% of lines exceeding 150% utilization for over 8 hours), followed by TTS (40% of lines exceeding 150%). Peak utilization rates reach up to 241% in ERTS and 244% in TTS.

- 3. The adoption of import DOEs by residential customers across all six subtransmission networks results in slight loading reductions on ZSS transformers, observed from as early as 2028 in GNTS-MBTS to 2038 in TSTS. These reductions decrease both the intensity and duration of overloads, but upgrades remain necessary for all networks as the number of overutilized transformers has not significantly decreased, and capacity issues persist.
- 4. The adoption of import DOEs by residential customers reduces the intensity and duration of 66kV line overloads in CBTS, ERTS, SMTS, and TTS networks from 2033-2038. However, while providing some relief, these reductions are insufficient to eliminate the need for network upgrades as capacity issues persist.

5. Recommendations

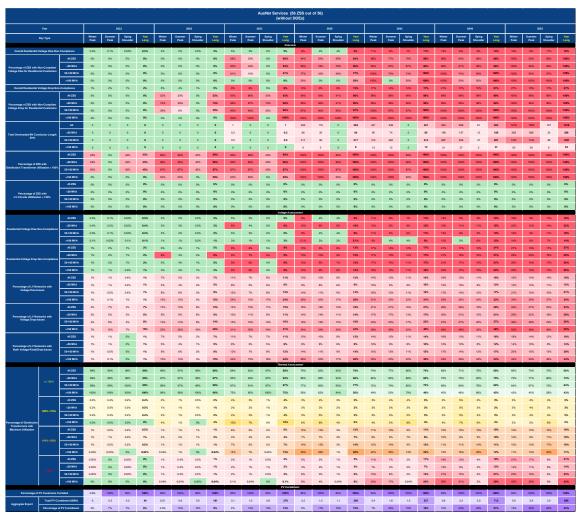
The following recommendations, based on the findings from the electrification impact assessment for the whole state and subtransmission networks considering both scenarios, "without" and "with" DOEs, are intended to help Victorian distribution companies in network planning beyond 2030.

Whole-State Extrapolation

- Continue implementing export DOEs to enable larger export limits (greater than 5 kVA)
 where/when network conditions allow. This approach should allow some customers to generate
 more renewable energy and make a more efficient use of the network infrastructure, while
 mitigating both voltage and thermal issues.
- 2. DOEs should not stop in exports, import DOEs should also be implemented to mitigate high power flows, which is expected to be driven by widespread EV adoption and electrification of loads. However, import DOEs should be extended to most if not all controllable loads (e.g., heating/cooling) where possible, given that this study shows that implementing import DOEs only to level-2 EVs is not enough to solve voltage issues.
- 3. Upgrade voltage regulation devices on MV-LV networks across the state by expanding the tap range of zone substation OLTCs or by upgrading distribution transformers with additional tap positions. This will enable better voltage management and facilitate further DER uptake. Implement these upgrades starting with networks already experiencing problems, followed by those prone to future voltage issues.
- 4. Upgrade distribution transformers facing significant (110%-150%) overload for long periods, and extreme (>150%) overload to increase network capacity. Any upgrades should account for expected future loads to ensure sufficient capacity in the medium to long term, minimizing the need for frequent reinforcements.

Subtransmission Networks

- Take measures to address the expected high loading conditions at ERTS and TTS by 2033, at CBTS and TSTS by 2038, at SMTS by 2043, and at GNTS-MBTS by 2048. Options may include upgrading the substation's capacity, implementing demand management strategies, or exploring alternative power supply configurations (e.g., use interconnection with other subtransmission networks).
- Take measures to correct the expected low inductive power factor at ERTS by 2038, at TTS by 2043, and at CBTS and GNTS by 2048. Options may include upgrading existing capacitor banks or installing additional ones.
- Conduct further studies with detailed modelling of the terminal stations of CBTS, SMTS,
 TTS, including its transformers and OLTCs, since the current models do not include them. This


would provide a more accurate assessment of voltage profiles under load electrification scenarios during peak demand days, potentially eliminating voltage issues on these networks.

- 4. Upgrade ZSSs facing significant (110%-150%) overload for long periods, and extreme (>150%) overload to increase network capacity. Any upgrades should account for expected future loads to ensure sufficient capacity in the medium to long term, minimizing the need for frequent reinforcements.
- 5. Take measures to reduce the loading on subtransmission lines facing significant (110%-150%) overload for long periods, and extreme (>150%) overload to increase network capacity. Options may include constructing new subtransmission lines, implementing demand management strategies, or exploring alternative power supply configurations (e.g., use interconnection with other subtransmission networks).
- 6. Expand import DOEs to cater for all controllable loads, given that this study shows that implementing import DOEs only to level-2 EVs already alleviate the demand on subtransmission networks, but it is not substantial. This will mitigate the expected surge in demand over the next 30 years. This strategy should reduce augmentation investments in both MV-LV and subtransmission networks.

6. Appendix

Appendix 1: Full Whole-State Extrapolation Table (Without DOEs) – AusNet

Appendix 2: Full Whole-State Extrapolation Table (Without DOEs) – CitiPower

									_				CitiPo	wer (22 ZS (without I	S out of 4	15)														
	Year			20	123			20	128			2	333			2	038			20	M3			20	48			20	153	
	Day Type		Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long
Overall Residential	Voltage Rise Non		0.04%	0%	0.1%	0.1%	1%	1%	0.2%	1%	3%	1%	1%	3%	4%	2%	1%	4%	8%	3%	4%	8%	11%	4%	53%	11%	13%	6%	6%	13%
		Ali ZSS	0%	0%	0%	0%	0%	0%	0%	0%	5%	0%	0%	5%	25%	0%	0%	9% 25%	100%	13%	5%	100%	100%	9%	59%	100%	100%	100%	100%	100%
Percentage of ZSS with Voltage Rise for Residen	Non-Compliant noisi Customers	50-100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	100%	100%	0%	57%	100%	100%	100%	100%	100%
		>100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Overall Residential	Voltage Drop Nor	All ZSS	1%	1%	0.2%	1%	5%	5%	1%	3%	100%	100%	5%	100%	14%	9%	100%	14%	19%	13%	11%	19%	23%	17%	15%	23%	25%	19%	17%	25%
Percentage of ZSS with Voltage Doop for Reside	Non-Compliant	<50 MVA	0%	0%	0%	0%	13%	13%	0%	13%	100%	100%	13%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Totale Diop to Reside		50-100 MVA >100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	100%	100%	100%	100%	990%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
		All	0	0	0	0	0	0	0		0	0	0		20	13	0	20	30	28	0	30	73	64	6	73	123	116	13	123
Total Overloaded MV Co (km)	inductor Length	<50 MVA 50-100 MVA	0	0	0	0	0	0	0		0	۰	0		4	3 10	0	4	6 24	5 22	0	6 24	15	13	1 4	15	24 99	23 93	3 10	24
		>100 MVA		0	0	0	0		0		0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		All ZSS	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	100%	100%	100%	0%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Percentage of Z Distribution Transformer I	SS with Utilisation > 150%	<50 MVA 50-100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	100%	100%	100%	0%	100%	100%	100%	100%	100%	100%	100%	100%	100%
		>100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		Ali ZSS	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Percentage of Z LV Circuits Utilities	55 with tion > 150%	50-100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		>100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% Voltage Asse	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		Alizss	0.04%	0%	0.1%	0.1%	1%	1%	0.2%	1%	3%	1%	1%	3%	4%	2%	1%	4%	8%	3%	4%	8%	11%	4%	5%	11%	13%	6%	6%	13%
Residential Voltage Rise	Non-Compliance	<50 MVA 50-100 MVA	0.04%	0%	0.1%	0.1%	1%	1%	0.2%	1%	3%	1%	1%	3%	5% 4%	2%	1%	5%	9%	4%	4%	9%	12%	5% 4%	5%	12%	14%	5%	7% 6%	14%
		>100 MVA					-					-														-		-	-	
		AllZSS	1%	1%	0.2%	1%	3%	3%	1%	3%	9%	6%	3%	9%	14%	9%	6%	14%	19%	13%	11%	19%	23%	17%	15%	23%	25%	19%	17%	25%
Residential Voltage Drop	Non-Compliance	<50 MVA 50-100 MVA	1%	2%	0.3%	2%	3%	4%	1%	4%	9%	7% 6%	3%	9%	15%	10%	7%	15%	18%	14%	12%	20%	25%	19%	16%	20%	28%	21%	19%	25%
		>100 MVA		-		-				-	-	-		-		-	-				-	-	-	-		-	-	-	-	-
		All ZSS	1%	0%	1%	1%	15%	13%	6%	15%	28%	10%	18%	26%	30%	21%	18%	30%	33%	25%	24%	35%	35%	28%	28%	35%	30%	31%	28%	30%
Percentage of LV Ne Voltage Rise b	stworks with	50-100 MVA	1%	0%	1%	1%	15%	13%	5%	15%	25%	15%	17%	25%	30%	21%	17%	30%	32%	24%	23%	32%	34%	27%	25%	34%	35%	30%	28%	35%
		>100 MVA Ali ZSS	8%	16%	8%	16%	27%	28%	17%	28%	32%	32%	26%	32%	36%	30%	31%	36%	40%	42%	33%	42%	51%	48%	36%	51%	54%	48%	41%	54%
Percentage of LV Ne	stworks with	<50 MVA	9%	17%	9%	17%	30%	31%	18%	31%	36%	35%	28%	36%	39%	39%	35%	39%	43%	44%	36%	44%	52%	50%	39%	52%	55%	50%	43%	55%
Voltage Drop I	haues	50-100 MVA	8%	15%	8%	15%	26%	27%	16%	27%	32%	31%	25%	32%	35%	35%	31%	35%	40%	41%	32%	41%	50%	48%	36%	50%	53%	48%	40%	53%
		>100 MVA All ZSS	1%	0%	0%	1%	16%	13%	3%	16%	26%	16%	17%	26%	30%	21%	18%	30%	32%	25%	24%	32%	35%	28%	26%	35%	36%	31%	28%	36%
Percentage of LV Ne	stworks with	<50 MVA	1%	0%	0%	1%	17%	15%	4%	17%	28%	17%	18%	28%	33%	23%	20%	33%	35%	27%	26%	35%	38%	30%	28%	38%	39%	34%	30%	39%
nom vomge Rine&	orop masses	50-100 MVA >100 MVA	1%	0%	0%	1%	15%	13%	3%	15%	25%	15%	16%	25%	30%	21%	17%	30%	31%	24%	23%	31%	34%	27%	25%	34%	35%	30%	27%	35%
		Alizss	100%	100%	100%	100%	95%	98%	100%	26%	73%	84%	100%	73%	52%	P0%	94%	52%	46%	50%	78%	45%	41%	47%	57%	41%	40%	42%	56%	40%
		All ZSS ⊲SO MVA	100%	100%	100%	100%	90%	98%	100%	96%	73%	84%	100%	73%	53%	61%	94%	53%	46%	51%	78%	46%	41%	42%	64%	41%	40%	42%	57%	40%
	Ca NOV	50-100 MVA	100%	100%	100%	100%	95%	98%	100%	96%	73%	84%	100%	73%	53%	60%	94%	53%	46%	50%	78%	46%	41%	42%	63%	41%	40%	42%	56%	40%
		>100 MVA All ZSS	0%	0%	0%	0%	4%	1%	0%	4%	10%	8%	0%	10%	6%	9%	5%	6%	4%	5%	9%	4%	4%	7%	6%	4%	2%	2%	7%	2%
	100%-110%	<50 MVA	0%	0%	0%	0%	4%	1%	0%	4%	10%	8%	0%	10%	6%	8%	5%	6%	4%	6%	8%	4%	4%	8%	6%	4%	2%	2%	7%	2%
Percentage of Distribution		50-100 MVA	0%	0%	0%	0%	4%	1%	0%	4%	10%	8%	0%	10%	6%	9%	5%	6%	4%	5%	9%	4%	4%	7%	6%	4%	2%	2%	7%	2%
Percentage of Distribution Transformers with Maximum Utilisation		AllZSS	0%	0%	0%	0%	0%	1%	0%	0%	16%	8%	0%	16%	32%	27%	1%	32%	24%	27%	13%	24%	13%	17%	27%	13%	12%	15%	32%	12%
	110%-150%	<50 MVA 50-100 MVA	0%	0%	0%	0%	0%	1%	0%	0%	16%	8%	0%	16%	31%	27%	1%	31%	24%	26%	13%	24%	13%	17%	26%	13%	12%	15%	31%	12%
		50-100 MVA >100 MVA	0%	0%	0%	0%	0%	1%	0%	0%	16%	8%	0%	16%	33%	28%	1%	33%	24%	27%	13%	24%	13%	17%	27%	13%	12%	15%	32%	12%
		AllZSS	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	9%	4%	0%	9%	26%	18%	0%	26%	42%	33%	4%	42%	46%	41%	6%	46%
		<50 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	9%	4%	0%	9%	20%	18%	0%	26%	42%	32%	4%	42%	40% 47%	40%	6% 6%	40% 47%
		>100 MVA	-			-	-	-				-	-	-	-		-					-			-	-	-		-	-
Percentage o	f PV Customers C	urtailed	0.2%	100%	85%	100%	85%	100%	86%	100%	85%	100%	85%	PV Curtain 100%	85%	100%	85%	100%	84%	100%	100%	100%	83%	100%	100%	100%	82%	100%	100%	100%
Aggregate Export	Total PV Cu		۰	0.1	0.1	39	0.01	0.3	0.2	75	0.04	0.4	0.3	116	0.1	0.5	0.5	164	0.2	0.7	0.5	224	0.3	1	0.9	297	0.4	1.2	1.1	369
	Percentage o	of PV Curtailment	0%	7%	7%	6%	0.3%	10%	10%	9%	2%	13%	13%	12%	5%	16%	16%	15%	7%	19%	19%	18%	10%	23%	22%	21%	13%	25%	24%	24%

Appendix 3: Full Whole-State Extrapolation Table (Without DOEs) – Jemena

Part													Jeme	na (26 ZS: (without I	out of 30	0)														
March Marc	Year			20	23			20:	28			2	033			2	038			20	H3			20	48			20	53	
March Marc	Day Type		Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long
Part	Overall Residential Voltage Rise Non-C																				5%		12%					6%	8%	13.8%
Part	i .																													100%
1	Percentage of ZSS with Non-Compliant Voltage Rise for Residencial Customers																													100%
Part																														100%
Part	Overall Residential Voltage Drop Non-C																			_										25%
Marchan Marc	Percentage of ZSS with Non-Compliant	c50 MVA	0%	0%	0%			0%	0%		100%	100%		100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Marchine Marchine	voltage Grop for Residential Customers																													100%
Part								0																						369
1	Total Overloaded MV Conductor Length (km)					0	۰	۰																	8					167
Part	1					0	0	0								4				31					2					160
				0%				31%					0%		100%	100%			100%	100%			100%	100%	100%		100%	100%	100%	100%
Part	Percentage of ZSS with Distribution Transformer Utilisation > 150%																		100%	100%					100%					100%
March Marc																				_										100%
Martine Mart																														0%
Part	Percentage of ZSS with LV Circuits Utilitisation > 150%																													0%
Marke Mark		>100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
March Marc		Alizss	0.1%	0.03%	0.0%	0.1%	1%	1%	0.2%	1%	3%	1%	1%	Voltago Asses 3%	5.3%	2%	2%	5.3%	9%	4%	5%	9%	12%	5.1%	6%	12%	14%	6%	8%	14%
Minister Minister	All ZSS downfall Yollage Rise Non-Compliance S0-100 M/V All ZSS do M/V																													14%
Miles No. No	i .																													14%
Substitute Sub		AllZSS	1%	1%	0.3%	1%	3%	3%	1%	3%	9%	7%	3%	9%	14%	9%	6%	14%	18%	13%	11%	18%	23%	17%	15%	23%	25%	19%	17%	25%
Mile	Residential Voltage Drop Non-Compliance																													25%
March Marc	i i							3%																						25%
March Marc																														29%
Parametery I V Format Age 1	Percentage of LV Networks with Voltage Rise Issues																													33%
Participal of Notice Participal of Notice																														34%
March Marc	i .																													47%
Miles Mile	Percentage of LV Networks with Voltage Drop Issues																													43%
Column C																														52%
State Stat																														29%
Marie Mari	Both Voltage Rise&Drop lasses			0%		1%	11%	9%	2%		18%	11%		18%	20%	15%	13%	20%	22%		16%	22%	24%	20%	18%	24%	25%			25%
Marie Mari		>100 MVA	1%	0%	0%	1%	15%	13%	3%	15%	24%	15%	16%	24% Through Arms	28% Discoil	20%	17%	28%	30%	23%	22%	30%	33%	26%	24%	33%	34%	29%	26%	34%
President 10 10 10 10 10 10 10 1				100%	14011	100%		30,1							0										70%					51%
A 1/25 15 15 15 15 15 15 15	ca 100%			100%		100%																			73%					50%
Presented of Control Presentation Presented of Control Presentation Presented of Control Presentation Presentat																									65%					42%
Part																									5%					2%
Marie Mari	100%-110%																													2%
Column C	ercentage of Distribution Transformers with																		- 1.0											2%
15 15 15 15 15 15 15 15																														11%
A725 05 05 05 05 05 05 05 05 05 05 05 05 05	110%-150%		0.2%	0.2%	0.0%	0.2%	0.2%	1%	0%		11%	6%	0%		21%	19%	1%	21%	17%	19%	10%		11%	13%	20%	11%	10%	11%	23%	10%
Cliffs (S. O.																														11%
																														40%
	-100	50-100 MVA	0%	0%	0%	0%	0.2%	0.2%	0%	0%	0.4%	0.2%	0%	0%	6%	3%	0.2%	6%	17%	12%	0.2%	17%	29%	22%	3%	29%	32%	28%	5%	32%
P/ Caralinet				0%	0%	0%	0.02%	0.02%	0%	0%	0.05%	0.0%	0%	8V Curtail	nent	4%		8%	25%	17%	0.02%			32%	3%	41%	42.0	40%		45%
Total PC (qualifores (GMb) 0 02 02 64 0.01 0.4 0.4 124 0.1 0.6 0.5 120 0.2 0.9 0.6 270 0.3 1.2 1.1 356 0.4 1.6 1.4 455 0.5 1.9 1.7 61	Total PV Curta											100.0																		100%
Appreciate Export	Aggregate Export																							-						24%

Appendix 4: Full Whole-State Extrapolation Table (Without DOEs) – Powercor

													Power	or (60 ZS	S out of 6	i8)														
	Year			20	123			20	128			,	033			2	038			20	M3			20	45			201	63	
	Day Type		Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long Overvier	Winter Peak	Summer Peak	Sping Shoulder	Year Long												
Overall Residential	Voltage Rise Non		0.3%	0.1%	0.03%	0.3%	2%	2%	0.3%	2%	5%	3%	2%	5%	8%	4%	4%	8%	10%	6%	6%	10%	13%	8%	8%	13%	18%	9%	10%	18%
		All ZSS	0%	0%	0%	0%	0%	0%	0%	0%	50%	10%	0%	50% 46%	68%	38%	38%	64%	87% 75%	58%	54%	87% 75%	95%	68%	72% 64%	85%	100%	80%	83% 71%	100%
Percentage of ZSS with Voltage Rise for Residen	Non-Compilant scial Customers	50-100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	55%	13%	0%	55%	74%	39%	39%	74%	97%	65%	68%	97%	100%	74%	77%	100%	100%	90%	94%	100%
Overall Residential		>100 MVA	1%	0% 2%	1%	0% 2%	0%	3%	0%	4%	8%	0% 6%	4%	8%	12%	9%	0% 7%	12%	100%	13%	11%	100%	100%	16%	100%	100%	100%	100%	100%	100%
Overall Residential	Voltage Drop Nor	All ZSS	1%	2%	0%	2%	35%	13%	0%	35%	78%	62%	35%	78%	12%	78%	7%	83%	90%	87%	85%	93%	95%	90%	90%	20%	100%	95%	90%	100%
Percentage of ZSS with Voltage Drop for Resider	Non-Compliant	<50 MVA	0%	0%	0%	0%	32%	11%	0%	32%	64%	39%	32%	64%	68%	64%	61%	68%	86%	75%	75%	86%	89%	79%	79%	89%	100%	89%	79%	100%
Totage Drop for Residen	man Customers	50-100 MVA >100 MVA	0%	0%	0%	0%	39%	16%	0%	39%	90%	84%	39%	100%	97%	90%	90%	97%	100%	97%	94%	100%	100%	100%	100%	100%	100%	100%	100%	100%
		All		0	0	0	0	0	0	0	1	0		1	344	118	0	344	494	397	0	494	1063	775	67	1063	1760	1654	135	1760
Total Overloaded MV Co	nductor Length	<50 MVA	۰	0	0	0	۰	0	0	0	1	0	۰	1	127	21	0	127	178	129	0	178	357	221	18	357	528	445	31	528
		50-100 MVA >100 MVA	0	0	0	0	0	0	0	0	0.4	0		0.4	203	92	0	203	295 21	251	0	295	660	520 34	46	660 46	1158 73	1145	98	1158
		Alizss	60%	0%	60%	60%	87%	87%	60%	87%	87%	87%	60%	87%	100%	100%	87%	100%	100%	100%	87%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Percentage of Zi Distribution Transformer L	SS with Juliantion > 150%	<50 MVA 50-100 MVA	79% 42%	0%	79% 42%	79%	89%	89%	79%	89%	89%	89%	79% 42%	89%	100%	100%	89%	100%	100%	100%	89%	100%	100%	100%	100%	100%	100%	100%	100%	100%
		>100 MVA	100%	0%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
		AllZSS	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Percentage of Zi LV Circuits Utilities	55 with ion > 150%	<50 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		>100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		All ZSS	0.3%	0.1%	0.03%	0.3%	2%	2%	0%	1.8%	5%	3%	2%	Voltage Asset 4.6%	8%	4%	4%	7.6%	10%	6%	6%	10.4%	13%	8%	8%	12.0%	18%	9%	10%	18.3%
Residential Voltage Rise I	Non-Compliance	<50 MVA	0.3%	0.2%	0.02%	0.3%	2%	2%	0%	1.0%	4%	3%	2%	4.2%	7%	4%	4%	7.2%	9%	6%	6%	9.3%	12%	7%	8%	11.5%	21%	8%	10%	21.1%
		50-100 MVA >100 MVA	0.3%	0.1%	0.03%	0.3%	2%	2%	0%	1.0%	3.0%	3%	2%	4.8%	2%	4%	4% 2%	7.8%	11%	4%	6% 4%	10.9%	13%	5%	9%	13.1%	18%	9%	11% 7%	17.5%
		Alizss	1%	2%	1%	2%	4.35%	3.37%	1.41%	4%	8%	6%	4%	8%	12%	9%	7%	12%	16%	13%	11%	16%	20%	16%	14%	20%	27%	18%	16%	27%
Residential Voltage Drop	Non-Compliance	<50 MVA	1%	1%	0.5%	1%	4%	3%	1%	4%	7%	5%	4%	7%	9%	7%	6%	9%	13%	11%	9%	13%	16%	13%	12%	16%	27%	16%	13%	27%
		50-100 MVA	1%	2%	1%	2%	4.5%	3.6%	1.5%	5%	9%	4%	4%	9%	13%	9%	5%	13%	17%	14%	12%	17%	22%	17%	15%	22% 16%	27%	19%	18%	27%
		AllZSS	1%	0.5%	0.4%	1%	7%	5%	2%	7%	11%	6%	7%	11%	12%	10%	8%	12%	13%	11%	10%	13%	15%	12%	11%	15%	19%	13%	13%	19%
Percentage of LV Ne Voltage Rise b	tworks with	<50 MVA 50-100 MVA	0.4%	0.4%	0.2%	0.4%	4%	3%	1%	4%	6%	4%	4%	6%	7%	6%	5%	7%	17%	6%	6% 12%	8%	10%	7%	13%	10%	16%	7%	16%	16%
		>100 MVA	1%	0.5%	1%	1%	8%	7%	3%	8%	13%	8%	9%	13%	15%	12%	9%	15%	17%	13%	12%	17%	19%	15%	13%	19%	24%	15%	15%	24%
		AllZSS	4%	7%	3%	7%	11%	12%	7%	12%	13%	14%	11%	14%	17%	16%	13%	17%	20%	20%	15%	20%	24%	24%	18%	24%	33%	25%	20%	33%
Percentage of LV Ne Voltage Drop Is	tworks with	<50 MVA 50-100 MVA	2%	4%	2%	4%	7%	15%	4%	7%	17%	17%	13%	17%	10%	10%	17%	10%	13%	12%	19%	13%	10%	15%	11%	16%	28%	17%	13%	28%
		>100 MVA	4%	8%	4%	8%	13%	14%	8%	14%	16%	16%	13%	16%	19%	19%	16%	19%	23%	23%	17%	23%	29%	27%	20%	29%	38%	28%	23%	38%
		AllZSS	1%	0.5%	0%	1%	7%	5%	2%	7%	11%	6%	7%	11%	12%	10%	8%	12%	13%	11%	10%	13%	15%	12%	11%	15%	18%	13%	11%	18%
Percentage of LV Ne Both Voltage Rise&C	tworks with Drop lesues	<50 MVA 50-100 MVA	0.4%	0.4%	0%	1%	4%	3%	1%	4% 8%	13%	4% 8%	9%	13%	7%	12%	10%	15%	7%	13%	12%	16%	18%	15%	13%	18%	14%	7%	14%	14%
		>100 MVA	1%	0.2%	0%	1%	8%	7%	2%	8%	13%	8%	8%	13%	15%	11%	9%	15%	16%	12%	12%	16%	18%	14%	13%	18%	22%	15%	14%	22%
		Alizss	99%	99%	99%	99%	90%	95%	98%	96%	88%	91%	95%	88% 88%	79%	81%	92%	79%	73%	76%	85%	73%	67%	71%	78%	67%	65%	69%	74%	65%
	ca 100%	<50 MVA 50-100 MVA	99%	98%	99%	98%	95%	95%	97%	95%	89%	91%	94%	89%	82%	85%	90%	82%	76%	80%	84%	76%	70%	75%	79%	70%	67%	73%	76%	67%
		50-100 MVA >100 MVA	99%	99%	100%	99%	95%	97%	99%	95%	87%	91%	96%	87%	77%	72%	94%	77% 68%	72%	74%	85%	72%	56%	59%	78%	50%	54%	58%	74%	54%
		Alizss	0.3%	1%	0.3%	1%	2%	2%	1%	2%	4%	3%	1%	4%	3%	4%	3%	3%	3%	4%	4%	3%	3%	5%	4%	3%	3%	4%	4%	3%
	100%-110%	<50 MVA 50-100 MVA	0.4%	1%	1%	1%	1%	2%	1%	1%	3%	2%	2%	3%	3%	4%	3%	3%	4%	4%	3% 4%	4%	3%	5%	4%	3%	3%	4%	3% 4%	3%
Percentage of Distribution		>100 MVA	0.1%	1%	0.4%	1%	2%	2%	1%	2%	6%	5%	1%	6%	4%	7%	4%	4%	4%	4%	6%	4%	4%	5%	5%	4%	3%	3%	5%	3%
Percentage of Distribution Transformers with Maximum Utilisation		All ZSS	1%	1%	0.3%	1%	2%	2%	1%	2%	7%	5%	2%	7%	12%	12%	3%	12%	12%	13%	9%	12%	11%	11%	13%	11%	11%	10%	15%	11%
	110%-150%	<50 MVA 50-100 MVA	1%	1%	1%	1%	3%	2%	1%	3%	5% 7%	5%	3%	5%	9%	9%	5%	9%	10%	10%	8%	10%	11%	10%	10%	11%	11%	10%	12%	11%
		>100 MVA	1%	0.5%	0.4%	0.5%	2%	2%	1%	2%	11%	7%	2%	11%	20%	18%	4%	20%	17%	19%	11%	17%	12%	14%	18%	12%	12%	12%	21%	12%
		AllZSS	0.03%	0.0%	0.03%	0%	1%	0.4%	0.2%	1%	2%	1%	1%	2%	6%	3%	1%	6%	12%	7%	2%	12%	19%	13%	5%	19%	22%	17%	7%	22%
		AVM 05>	0.1%	0%	0.1%	0%	1%	0.4%	0.4%	0.5%	1%	1%	0.4%	1%	5%	3%	2%	5%	11%	8%	4%	11%	21%	10%	7%	16%	18%	13%	9%	18%
		50-100 MVA																												
	>150%	50-100 MVA >100 MVA	0.04%	0.0%	0.04%	0%	1%	0.2%	0.3%	1%	2%	1%	1%	2%	8%	3%	1%	8%	18%	11%	3%	18%	29%	21%	6%	29%	32%	26%	8%	32%
Percentage of	> 150%	>100 MVA		0.0%	0.04%	0% 100%	1%	0.2%	0.3%	1%	2% 85%	1%	1% 85%	2% PV Greens 100%	8% 85%	3%	85%	100%	18%	100%	100%	10%	29% 83%	21%	100%	100%	32% 82%	20%	100%	100%
Percentage of Aggregate Export	Total PV Cu	>100 MVA	0.04%									- 11		PV Curtain	tend															

Appendix 5: Full Whole-State Extrapolation Table (Without DOEs) – United Energy

No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Section Sect
Part	100 100
Part	7% 14% 14% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15
March Marc	1000. 1000.
March Marc	10% 100% 100% 100% 100% 100% 100% 100%
Marche M	100% 100% 100% 100% 100% 100% 100% 100%
Part	17% 25% 100% 100% 100% 100% 100% 100% 100% 10
March Marc	100% 100% 100% 100% 100% 100% 100% 100%
Part	100% 100% 100% 100% 100% 100% 100% 100%
March Marc	100% 100% 1000% 1000% 100% 100% 100% 10
March Marc	05 681 12 143 455 140
State Stat	43 455 22 214 100% 100% 100% 100% 100% 100% 100% 100% 100% 0%
Statistical	22 214 100% 100% 100% 100% 100% 100% 100% 100% 100% 0% 0% 0%
According of State	100% 100% 100% 100% 100% 100% 100% 100%
Market M	100% 100% 100% 100% 0% 0% 0% 0%
State No. State No. State No. State	0% 0% 0% 0% 0% 0% 0% 0% 0%
August 1 1 1 1 1 1 1 1 1	0% 0% 0% 0% 0% 0%
Consideration Property Consideration Property	0% 0%
Second S	
August A	UN 0%
Company Comp	
	7% 14%
Action 15 15 15 15 15 15 15 15 15 15 15 15 15	7% 14%
Control of the Cont	7% 13%
State Stat	17% 25%
According of Control and Section 1.5 (25) (15) (15) (15) (15) (15) (15) (15) (1	17% 26%
Column C	17% 25%
	22% 30% 30% 38%
Alizza de 175 de	20% 28%
Manager (1984) 18 15 15 25 25 16 25 25 25 25 25 25 25 25 25 25 25 25 25	28% 35%
Percentage of LY Networks with	33% 46% 43% 55%
	30% 43%
	40% 53%
ALBERT 15 U.S. 15 U.S. 15 U.S. 25 U.S.	21% 29%
Personal and Section 1. Section 1	19% 27%
MINERAL PS 605 PS 105 105 25 105 25 105 25 105 25 105 25 25 25 25 25 25 25 25 25 25 25 25 25	27% 35%
Adds 10% 10% 10% 1995 19% 19% 19% 19% 19% 19% 19% 19% 19% 19%	63% 49%
	50% 40%
\$50m0 M 395 996 100 975 975 975 976 986 050 975 975 976 976 976 976 977 977 978 978 978 978 978 978 978 978	57% 52% 57% 41%
Alds 31% 0% 01% 01% 01% 01% 01% 01% 01% 01% 01	6% 2%
10x10x	7% 2%
State Vis. 55 C5	5% 2.4%
A A A A A A A A A A	25% 11%
10x	
45-108/WA 04% 02% 02% 02% 1% 2% 1% 1% 1% 1% 0% 1% 1% 22% 19 22% 19 22% 19 22% 19 20% 11% 19 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	31% 12%
August 2015 675 675 675 675 675 675 675 675 675 67	23% 11%
ON	
5-10-8 Feb. 250, 250, 250, 250, 250, 250, 250, 250,	23% 11% 31% 12% 0% 33% 0% 46%
Ficultual	23% 11% 31% 12% 6% 37% 6% 46% 7% 34%
Proceedings of Communication CDS 1005 005 005 005 005 005 005 005 005 00	23% 11% 12% 31% 12% 6% 37% 46% 46% 46% 46% 46% 46% 46% 46% 46% 46
Agripus Equation (1) To (1) To (2) To (3) To	23% 11% 31% 12% 6% 37% 6% 46% 7% 34%

Appendix 6: Full Whole-State Extrapolation Table (With DOEs) – AusNet

													AusNet Se	rvices (50 (with DC	S ZSS ou (Es)	t of 56)														
Year Day Type Overall Residential Voltage Rise Non-Compliance				21	123			20	28			2	033			21	038			2	143			20	345			20	53	
	Day Type		Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long
O	Velices Bloc No.	C	0.3%	0.00	0.000	92%	26		0.28	W.		24		Overvier 4%			w		-	w	26	~	-	200			100	~	200	100
Oversii Kesidentisi	voitage Kille Non	Ali ZSS	0%	0%	0.03%	0%	0%	0%	0%	0%	42%	16%	0%	42%	71%	25%	10%	71%	77%	32%	18%	77%	80%	34%	30%	80%	80%	21%	30%	86%
Percentage of ZSS with It	Non-Compliant	<50 MVA	0%	0%	0%	0%	0%	0%	0%	0%	70%	35%	0%	70%	83%	40%	35%	83%	87%	61%	35%	87%	91%	61%	61%	91%	90%	39%	61%	96%
Voltage Rise for Residen	icial Customers	50-100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	26%	3%	0%	20%	68%	10%	3%	68%	74%	13%	6%	74%	74%	10%	19%	74%	84%	10%	10%	84%
Overall Residential)	Voltage Drop Nor	>100 MVA	9%	0% 2%	1%	0% 2%	0% 4%	0%	1%	4%	7%	0% 5%	0%	0% 7%	0%	0%	5%	9%	0%	0%	0% 7%	9%	50%	0%	0%	19%	24%	11%	10%	0% 24%
		AIZSS	0%	0%	0%	0%	40%	0%	0%	40%	88%	52%	23%	88%	96%	82%	54%	96%	90%	91%	88%	90%	98%	95%	95%	90%	100%	98%	95%	100%
Percentage of ZSS with I	Non-Compliant	⊲0 MVA	0%	0%	0%	0%	74%	0%	0%	74%	87%	61%	43%	87%	96%	91%	78%	96%	96%	91%	87%	90%	90%	96%	90%	96%	100%	90%	96%	100%
Voltage Drop for Residen	ntial Customers	50-100 MVA >100 MVA	0%	0%	0%	0% 0%	32%	0%	0%	32%	87%	45%	10%	87% 100%	97%	77%	39%	97% 100%	97%	90%	87%	97%	100%	94%	94%	100%	100%	100%	94%	100%
		All	0%	0%	0%	0	0%	0%	0%	0	100%	50%	0%	1	100%	50%	0%	288	100%	300	100%	403	100% 622	355	100%	622	100%	100%	100%	1126
Total Overloaded MV Con	nductor Length	<50 MVA	0	0	۰	0	0	0	۰	0	0.2	0	0	0.2	53		0	66	92	59	0	92	135	84	0	135	255	108	18	255
(km)		50-100 MVA	0	0	0	0	0	0	0	0	0.5	0	0	0.5	214	38	0	214	299	229	0	299	467	291	0	467	837	410	59	837
		>100 MVA	43%	0 0%	42%	42%	0 89%	0 89%	43%	0 89%	0 89%	0 89%	43%	0 89%	100%	100%	42%	100%	12	12	42%	12	20	13	0	100%	35 100%	100%	89%	35
		All ZSS	43%	0%	43%	43%	90%	90%	43%	90%	90%	90%	43%	90%	100%	100%	43%	100%	100%	100%	43%	100%	100%	100%	43%	100%	100%	100%	90%	100%
Percentage of ZI Distribution Transformer U	os With Jillisation > 150%	50-100 MVA	45%	0%	45%	45%	87%	87%	45%	87%	87%	87%	45%	87%	100%	100%	45%	100%	100%	100%	45%	100%	100%	100%	45%	100%	100%	100%	87%	100%
		>100 MVA	0%	0%	0%	0%	50%	50%	0%	50%	50%	50%	0%	50%	100%	100%	0%	100%	100%	100%	0%	100%	100%	100%	0%	100%	100%	100%	50%	100%
		AII ZSS	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% 0%	0%	0%	0%	0% 0%	0%	0%	0%	0%	0%	0%	0%	0%
Percentage of ZS LV Circuits Utilisati	55 with ion > 150%	<00 MVA 50-100 MVA	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	6%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	>100 All 1	>100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		41755	0.3%	0.1%	0.00%	0.3%	2%	1%	0.2%	2%	4%	2%	1%	Voltage Asset 4%	sment 6%	3%	2%	6%	7%	3%	2%	7%	7%	3%	4%	7%	100	3%	3%	10%
		-do MVA	0.4%	0.2%	0.02%	0.4%	2%	2%	0.2%	2%	5%	3%	1%	5%	8%	4%	3%	8%	9%	5%	3%	9%	9%	5%	5%	9%	15%	4%	4%	15%
Residential Voltage Rise N	All ZSS	50-100 MVA	0.3%	0.1%	0.03%	0.3%	2%	1%	0.2%	2%	4%	2%	1%	4%	6%	2%	2%	6%	6%	3%	2%	6%	7%	3%	3%	7%	10%	2%	3%	10%
			0.1%	0.03%	0.1%	0.1%	1%	0%	0.2%	1%	2%	1%	1%	2%	3.1%	1%	1%	3.1%	4%	1%	1%	4%	5%	1%	1%	5%	4%	1%	1%	4%
			1%	2%	1%	2%	4%	3%	1%	4%	7%	5%	3%	7% 8%	11%	7%	5%	11%	14%	8%	7%	14%	19%	10%	10%	19%	24%	11%	10%	24%
Residential Voltage Drop F	Non-Compliance	50-100 MVA	1%	2%	1%	2%	4%	3%	1%	4%	7%	5%	3%	7%	11%	6%	5%	11%	14%	8% 7%	7%	14%	19%	10%	9%	19%	24%	11%	10%	24%
		>100 MVA	1%	1%	0.3%	1%	3%	3%	1%	3%	7%	5%	3%	7%	12%	5%	3%	12%	15%	7%	6%	15%	20%	10%	9%	20%	24%	11%	11%	24%
		All ZSS	1%	1%	0.4%	1%	6%	3%	2%	6%	10%	5%	5%	10%	10%	4%	5%	10%	9%	6%	7%	9%	11%	5%	7%	11%	14%	5%	6%	14%
Percentage of LV Net Voltage Rise is	tworks with	<50 MVA 50-100 MVA	1%	1%	0.2%	1%	5% 7%	2%	1%	5%	7%	3%	4%	7%	8%	4%	4%	8%	7%	5%	6%	7%	9%	4%	6%	9%	13%	4%	5%	13%
		50-100 MVA >100 MVA	1%	0.5%	0.4%	1%	12%	3%	2%	7%	10%	10%	11%	10%	11%	4% 7%	10%	11%	10%	11%	7%	10%	12%	10%	14%	12%	15%	5%	11%	15%
		AIZSS	4%	7%	4%	7%	12%	12%	7%	12%	14%	14%	11%	14%	17%	16%	13%	17%	19%	18%	14%	19%	24%	19%	15%	24%	31%	21%	17%	31%
Percentage of LV Net	tworks with	⊲0 MVA	3%	5%	3%	5%	9%	9%	5%	9%	10%	10%	8%	10%	13%	13%	9%	13%	15%	15%	10%	15%	21%	16%	11%	21%	28%	18%	13%	20%
Voltage Drop Is	esues	50-100 MVA >100 MVA	4%	8%	4%	8%	13%	13%	8%	13%	15%	15%	12%	15%	17%	18%	14%	18%	21%	20%	15%	21%	25%	20%	10%	25%	32%	22%	10%	32%
		>100 MVA All ZSS	7%	15%	7%	15%	25%	24%	15%	25%	31%	29%	23%	10%	31%	32%	20%	10%	37% 9%	35%	28%	37% 9%	38%	34% 5%	31%	11%	13%	36%	32%	13%
Percentage of LV Net	tworks with	<0 MVA	1%	1%	0%	1%	4%	2%	1%	4%	7%	3%	4%	7%	7%	4%	4%	7%	7%	5%	5%	7%	8%	4%	6%	8%	11%	4%	5%	11%
Percentage of LV Net Both Voltage Rise&D	Orop Issues	50-100 MVA	1%	0.5%	0%	1%	6%	3%	1%	6%	10%	5%	5%	10%	11%	4%	5%	11%	10%	6%	6%	10%	11%	6%	8%	11%	14%	5%	6%	14%
		>100 MVA	1%	0.1%	0%	1%	13%	6%	2%	13%	20%	10%	10%	20% Theoryal Asso	21%	7%	9%	21%	19%	11%	11%	19%	21%	10%	14%	21%	21%	8%	11%	21%
		AII 255	99%	99%	99%	99%	90%	98%	99%	96%	90%	94%	98%	90%	81%	85%	95%	81%	77%	80%	91%	77%	73%	77%	85%	73%	70%	75%	83%	70%
	<= 100%	<50 MVA	99%	90%	99%	99%	97%	97%	99%	97%	94%	95%	98%	94%	88%	91%	95%	88%	85%	87%	92%	85%	80%	84%	89%	80%	77%	83%	87%	77%
		50-100 MVA >100 MVA	100%	100%	100%	99%	98%	98%	99%	96%	89%	94%	98%	89%	78%	67%	95%	78%	75% 52%	77% 50%	91%	75%	70%	75%	74%	70%	67% 44%	73%	81%	67% 44%
		Ali ZSS	0.2%	0.4%	0.2%	0.4%	2%	1%	0.5%	2%	2%	2%	1%	2%	4%	3%	2%	4%	2%	4%	3%	2%	4%	3%	6%	4%	4%	4%	6%	4%
	100%-1108	<50 MVA	0.2%	0.5%	0.3%	0.5%	1%	1%	1%	1%	1%	1%	1%	1%	3%	2%	1%	3%	2%	3%	3%	2%	4%	4%	4%	4%	4%	4%	4%	4%
		50-100 MVA	0.2%	0.4%	0.2%	0.4%	2%	1%	0.4%	2%	2%	2%	1%	2%	5%	4%	2%	5%	3%	4%	3%	3%	4%	3%	7%	4%	4%	4%	7%	4%
Percentage of Distribution Transformers with Maximum Utilisation		>100 MVA All ZSS	0.0%	0.0%	0.0%	0%	4%	1%	1%	4%	5%	4%	1%	5%	9%	7%	2%	9%	12%	13%	5%	12%	10%	11%	14% 7%	10%	4%	10%	13%	10%
		AII ZSS	1%	1%	0.2%	1%	2%	1%	1%	2%	3%	3%	1%	3%	6%	7%	2%	6%	7%	13%	4%	7%	10%	8%	7% 6%	8%	10%	7%	7%	8%
	110%-150%	50-100 MVA	1%	0.5%	0.2%	0.5%	1%	1%	1%	1%	7%	3%	1%	7%	13%	12%	2%	13%	13%	14%	4%	13%	10%	13%	8%	10%	10%	11%	10%	10%
		>100 MVA	0.04%	0.04%	0%	0.04%	0.04%	0%	0%	0.04%	14%	4%	0.00%	14%	30%	25%	1%	30%	26%	30%	5%	20%	16%	24%	12%	16%	14%	20%	10%	14%
		All ZSS	0.02%	0%	0.02%	0%	1%	0.3%	0.1%	1%	2%	1%	0.4%	2%	3%	1%	1%	3%	9%	3%	1%	9%	14%	4%	1%	14%	10%	10%	2%	10%
	>110%	50-100 MVA	0.03%	0%	0.00%	0%	0%	0.4%	0.2%	0%	1%	1%	0%	1%	3%	1%	1%	4%	9%	4%	1%	9%	15%	9%	1%	15%	10%	12%	2%	18%
		>100 MVA	0%	0%	0%	0%	0.04%	0.04%	0.00%	0.04%	0.1%	0.04%	0%	0.1%	4%	1%	0.00%	4%	17%	8%	0.00%	17%	31%	20%	0%	31%	37%	27%	0%	37%
Percentage of	PV Customers C	urtailed	1%	100%	85%	100%	73%	100%	73%	100%	62%	100%	65%	PV Contribution	68%	100%	72%	100%	77%	100%	79%	100%	82%	100%	83%	100%	84%	100%	80%	100%
		rtsilment (GWh)		1	0	141	0.05	1	1	236	0.6	2	1	449	1.4	3	2	892	2	4	3	1193	3	5	4	1551	3	5	5	1854
Aggregate Export	Percentage o	of PV Curtailment	0%	7%	7%	6%	0.9%	10%	8%	8%	9%	16%	13%	12%	19%	26%	23%	23%	25%	28%	27%	27%	27%	30%	31%	31%	29%	31%	34%	33%
Percenta	age of EVs Affects	ed						-		-	9%	9%	8%	9% 9%	12%	12%	11%	12%	10%	10%	15%	10%	20%	20%	19%	20%	24%	24%	23%	24%
	V Charging Delay									-	3.1	2.6	3.3	13	4.5	4.0	4.0	4.0	4.4	45	5.0	5.0	42	45	49	4.9	4.0	45	4.5	4.5

Appendix 7: Full Whole-State Extrapolation Table (With DOEs) – CitiPower

·													CitiPov	ver (22 ZS	S out of	45)														
	Year			20	123			20	128				133	<u>, </u>		26	08				143			2	248			201	53	
	Day Type		Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer	Sping Shoulder	Year Long	Winter Peak	Summer	Sping Shoulder	Year Long	Winter Peak	Summer	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long
			FEER	7-48	Jilyarati	Cong	FRAN	FREA	Sincipal	Lutry	PHAL	run.	and a deli	Overvie	reat.		anouna.	Long	r wat.	- Feat	Jiona	Long		reat	Jilourus	Lung		Paul.	Jimana	Long
Overall Residential V	Voltage Rise Nor	All ZSS	0.04%	0%	0.1%	0.1%	1%	0.2%	0.2%	9%	2%	03%	0.4%	2%	3%	0.5%	9%	3%	5%	1%	1%	5%	9%	1%	1%	9%	3%	1%	1%	9%
Percentage of ZSS with N	Non-Compliant	-SO MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	13%	0%	0%	13%	25%	0%	0%	25%	0%	0%	0%	0%
Voltage Rise for Residence	cial Customers	50-100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Overall Residential V	Voltage Drop No	>100 MVA	1%	1%	0%	9%	0%	0%	1%	0% 3%	0% 7%	5%	0% 2%	0% 7%	9%	0% 5%	0%	12%	0%	7%	0% 6%	15%	20%	0%	0%	20%	0%	10%	0%	24%
		Alizss	0%	0%	0%	0%	5%	5%	0%	5%	100%	23%	0%	100%	100%	14%	5%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Percentage of ZSS with N	Non-Compliant	-SO MVA	0%	0%	0%	0%	13%	13%	0%	13%	100%	50%	0%	100%	100%	25%	13%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
		50-100 MVA >100 MVA	0%	0%	0%	0%	0%	0%	0%	0% 0%	100%	7%	0%	100%	100%	7%	0%	100%	100%	100%	900%	100%	100%	100%	100%	100%	100%	100%	100%	100%
		A	0	0	0		0	0	0	۰	0	0	0	0	20	6	0	20	28	28	0	25	47	30	0	47	81	47	6	81
Total Overloaded MV Con	nductor Length	≪0 MVA	0	0	0	0	0	0	٥	0	0	0	0	0	4	1	0	4	6	6	0	6	10	6	0	10	16	10	1	16
		50-100 MVA >100 MVA	0	0	0	0	0	0	0	۰	0	0	0		16	4	0	16	22	22	0	22	37	24	0	37	65	37	4	65
		Alizss	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	100%	100%	100%	0%	100%	100%	100%	0%	100%	100%	100%	0%	100%
Percentage of ZS Distribution Transformer U	SS with Itilization > 150%	≪0 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	100%	100%	100%	0%	100%	100%	100%	0%	100%	100%	100%	0%	100%
		50-100 MVA >100 MVA	0%	0%	0%	0%	0%	0%	0%	0% 0%	0%	0%	0%	0%	100%	100%	0%	100%	100%	100%	0%	100%	100%	100%	0%	100%	100%	100%	0%	100%
		Ali ZSS	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Percentage of ZS LV Circuits Utilization	55 with on > 150%	<50 MVA 50-100 MVA	0%	0%	0%	0%	0%	0%	0%	0% 0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% 0%
		>100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		Ali ZSS	0.04%	0%	0.1%	0.1%	1%	0%	0.2%	1%	2%	0.3%	0.4%	Voltage Asset 2%	3%	0.5%	1%	3%	3%	1%	1%	3%	4%	1%	1%	4%	3%	1%	1%	3%
Residential Voltage Rise N	fon-Compliance	<50 MVA	0.04%	0%	0.1%	0.1%	1%	0%	0.2%	1%	2%	0.4%	0.4%	2%	3%	1%	1%	3%	4%	1%	1%	4%	5%	1%	1%	5%	3%	1%	1%	3%
		50-100 MVA >100 MVA	0.04%	0%	0.1%	0.1%	1%	0%	0.2%	1%	2%	0.3%	0.4%	2%	2%	0.5%	1%	2%	3%	1%	1%	3%	4%	1%	1%	4%	3%	1%	1%	3%
		Alizss	1%	1%	0.2%	1%	3%	3%	1%	3%	7%	5%	2%	7%	12%	5%	3%	12%	15%	7%	6%	15%	20%	10%	9%	20%	24%	10%	11%	24%
Residential Voltage Drop N	Non-Compliance	≪9MVA	1%	2%	0.3%	2%	3%	3%	1%	3%	8%	5%	3%	es.	13%	5%	3%	13%	17%	7%	7%	17%	22%	10%	10%	22%	20%	11%	12%	26%
		50-100 MVA >100 MVA	1%	1%	0.2%	1%	3%	3%	1%	3%	7%	5%	2%	7%	12%	5%	3%	12%	15%	7%	6%	15%	20%	9%	9%	20%	23%	10%	10%	23%
		Ali 255	1%	0%	1%	1%	13%	7%	4%	13%	21%	10%	11%	21%	22%	7%	10%	22%	20%	11%	13%	20%	23%	10%	15%	23%	22%	8%	11%	22%
Percentage of LV Nets Voltage Rise las	tworks with	<50 MVA 50-100 MVA	1%	0%	1%	1%	15%	7%	5%	15%	23%	11%	12%	23%	25% 22%	7% 7%	11%	25%	22%	12%	15%	22%	25%	11%	10%	25%	25%	9%	12%	25%
		>100 MVA	176		176	176	13%			12%	21%	10%	1176	21%	22%	- 754	10%	22%	20%	11%	13%	20%	23%	10%	1476	23%	22%		11%	
		Alizss	8%	16%	8%	16%	27%	20%	16%	27%	32%	31%	25%	32%	32%	34%	28%	34%	38%	36%	30%	38%	39%	35%	32%	39%	44%	37%	33%	44%
Percentage of LV Net- Voltage Drop Iss	tworks with	≪50 MVA 50-100 MVA	9%	17%	9%	17%	30%	28%	17%	30%	30%	34%	27%	30%	30%	37%	31%	37%	41%	39%	33%	41%	42%	38%	30%	42%	46%	40%	30%	46%
		>100 MVA								-		-		-	-								-					-		-
		Ali ZSS <50 MVA	1%	0%	0%	1%	13%	7%	2%	13%	21%	10%	10%	21%	22%	7%	9%	22%	20%	11%	11%	20%	22%	10%	15%	22%	22%	8%	11%	22%
Percentage of LV Net- Both Voltage Rise&Dr	tworks with Irop Issues	50-100 MVA	1%	0%	0%	1%	15%	7%	2%	13%	23%	11%	11%	21%	25%	7% 7%	10%	25%	22%	12%	12%	20%	25%	11%	14%	25%	25%	9%	12%	25%
		>100 MVA		-	-		-	-	-	-	-	-	-			-	-			-	-	-	-	-	-			-		-
		All ZSS	100%	100%	100%	100%	96%	99%	100%	90%	79%	91%	100%	72%	54%	54%	90%	54%	49%	53%	89%	49%	45%	50%	72%	45%	41%	47%	67%	41%
	ca 100%	≪0 MVA	100%	100%	100%	100%	96%	99%	100%	90%	79%	91%	100%	79%	55%	65%	90%	55%	49%	54%	89%	49%	46%	51%	73%	46%	41%	47%	68%	41%
		50-100 MVA >100 MVA	100%	100%	100%	100%	96%	99%	100%	90%	79%	91%	100%	79%	54%	64%	90%	54%	49%	52%	89%	49%	45%	50%	72%	45%	41%	47%	67%	41%
		Ali ZSS	0%	0%	0%	0%	4%	1%	0%	4%	6%	5%	0%	6%	10%	7%	3%	10%	5%	7%	5%	5%	5%	3%	15%	5%	4%	3%	13%	4%
	100%-110%	<50 MVA 50-100 MVA	0%	0%	0%	9%	4%	1%	0%	4%	5% 6%	5%	0%	5% 6%	10%	7% 8%	3%	10%	5%	7%	5%	5%	5%	3%	15%	5%	5%	3%	13%	5% 4%
Percentage of Distribution		>100 MVA			-		- 12												376						.376			-		
Percentage of Distribution Transformers with Maximum Utilisation		Alizss	0%	0%	0%	0%	0%	0%	0%	0%	10%	4%	0%	10%	32%	27%	1%	32%	28%	32%	5%	28%	17%	26%	13%	17%	15%	21%	20%	15%
	110%-150%	-50 MVA 50-100 MVA	0%	0%	0%	0%	0%	0%	0%	0% 0%	10%	4%	0%	10%	31%	27%	1%	31%	27%	31%	5%	27%	17%	26%	12%	17%	15%	21%	19%	15%
		>100 MVA	-	-	-		-	-	-	-	-	-	-	-	-	-	-			-	-	-	-		-			-	-	-
		AII 255	0%	0%	0%	9%	0%	0%	0%	0% 0%	0%	0%	0%	0%	4%	1%	0%	4%	19%	8%	0%	19%	33%	21%	0%	33%	40%	29% 29%	0%	40% 39%
	>150%	50-100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	4%	1%	0%	4%	19%	8%	0%	19%	33%	21%	0%	33%	39%	29%	0%	40%
		>100 MVA								-				even								-		-		-	-	-		-
Percentage of I	PV Customers C	urtailed	0.2%	100%	85%	100%	73%	100%	75%	100%	63%	100%	69%	100%	73%	100%	84%	100%	83%	100%	89%	100%	88%	100%	93%	100%	90%	100%	95%	100%
Aggregate Export		artailment (GWh)	0	0.2 7%	0.1	51	0.02	0 10%	0.3	87	0.2	17%	0 12%	103	0.5	1 27%	1 23%	325 23%	0.7 25%	2 31%	1 28%	451 28%	1 20%	2	2 34%	610	1 31%	2 34%	2 27%	725 36%
Percenta				- 15	-75		1.1%	157%	uh.	-A				EV Manage	ment	_												_		
	ige of EVs Affect V Charging Dela										3.9	3.0	35	3.9	13% 5.1	13%	12%	13%	10%	16%	5.7	10%	21%	20% 4.9	20% 5.7	21%	24% 4.5	4.9	23%	24%

Appendix 8: Full Whole-State Extrapolation Table (With DOEs) – Jemena

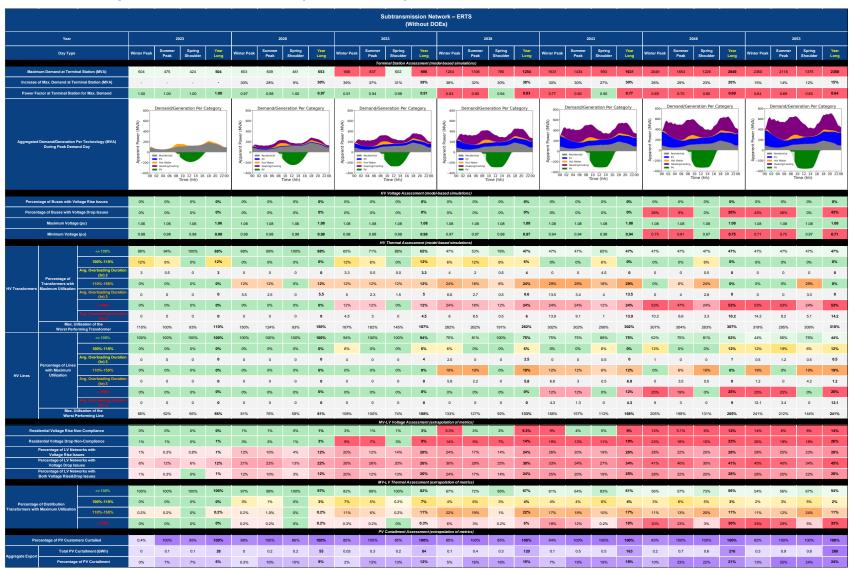
Part	1% 1% 4.0% 0% 4% 27%
Part	r Summer Sping Year Peak Thousafer Long 1% 1% 1% 4.2% . 0% 4% 27%
*** Process of the control of the co	1% 1% 4.0% 0% 4% 27%
Miles Mile	. 0% 4% 27%
Marchen Marc	
Constitution Cons	
President Notice President	
Process of Control o	11% 11% 24%
March Marc	
A	100% 100% 100%
Tell part Tell	
Marie Mari	
Align Processing Align Processing	53 6 101 16 2 27
Control of the State of the S	100% 31% 100%
188 18	6 100% 27% 100% 6 100% 33% 100%
	6 100% 50% 100%
	0% 0% 0%
17 Control (1988) 1 Con	0% 0% 0%
MANUAL DIS. DIS. DIS. DIS. DIS. DIS. DIS. DIS.	0% 0% 0%
AND 515 5005 505 515 15 55 505 15 75 15 15 75 515 15 75 75 75 75 75 75 75 75 75 75 75 75 75	
Executed Market Find In Conjugate 100 0000 0000 0000 0000 0000 0000 000	
SHOWAN 0.15 0.055 0.055 0.15 0.55 0.55 0.55 0.	
0.000 15 15 15 15 15 15 15 15 15 15 15 15 15	
Supply 1 (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
Principle of Uniformity and Vision Uniform	
5 (1) (2) (3) (3) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	
MADS 66 US 6 US 25 US US 25 US	
	. 25% 21% 42% . 25% 24% 27%
MIN 9 10 10 10 10 10 10 10 10 10 10 10 10 10	25% 21% 43%
A 223 5 5 75 175 25 275 175 275 175 275 175 275 175 275 175 275 175 175 275 175 175 175 175 175 175 175 175 175 1	
25(10) 17/4 1% 0% 0% 1% 3% 2% 2% 9% 15% 7% 7% 15% 15% 2% 0% 15% 14% 8% 8% 8% 14% 16% 8% 11% 16% 10%	
Therm Assurance	7% 11% 21%
## 155 105	
5/19 10 10 10 10 10 10 10 10 10 10 10 10 10	
	40% 68% 42% 3% 11% 4%
data or	3% 12% 4%
Section 5: 55 55 55 55 55 55 55 55 55 55 55 55	3% 9% 4% 3% 13% 4%
Parameter Communication (Communication Communication Commu	
Section 25% (25% (25% (25% (25% (25% (25% (25%	
300 MIN 2015 6.075	. 20% 19% 15%
MAI 5. 55 57 57 575 575 575 575 575 575 575	
SHOWAL ON	19% 0% 27%
26 45 55 55 55 55 55 55 55 55 55 55 55 55	. 28% 0% 38%
President Communication Co. 100, 105	3 3 1206
National Processing and Control of the Control of t	
Personger d'Et Abresid	
Annual Ex Compley Group (A)	

Appendix 9: Full Whole-State Extrapolation Table (With DOEs) – Powercor

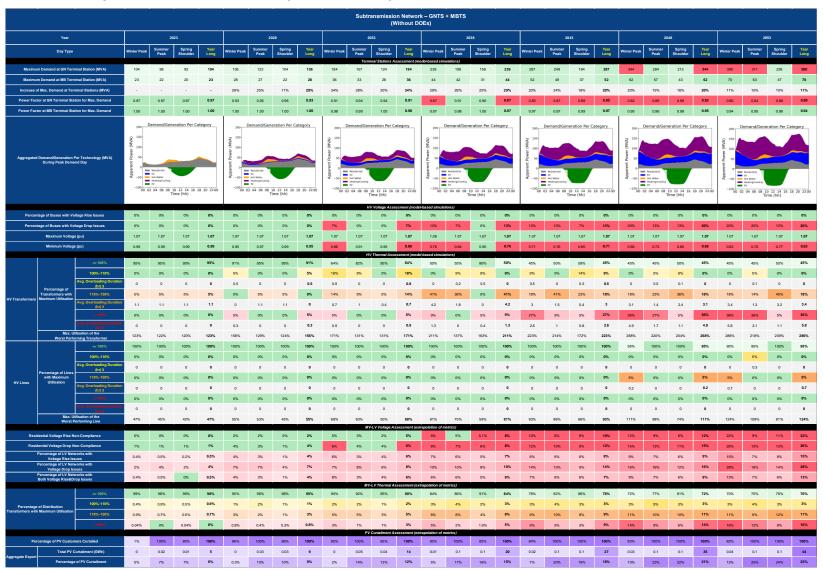
													Power	or (60 ZS (with DC	S out of	68)														
	Year			21	123			20	28			2	133	_			038			2	143			20	345			20	63	
	Day Type		Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Pask	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long
Overall Residential						0.3%								Overvies																
Overall Residential	Voltage Rise Non	-Compliance All ZSS	03%	0.1%	0.00%	0%	2%	9%	0.2%	0%	25%	2%	1%	4% 25%	53%	12%	2%	53%	58%	18%	7%	58%	63%	22%	23%	63%	85%	10%	15%	85%
Percentage of ZSS with I	Non-Compliant	<50 MVA	0%	0%	0%	0%	0%	0%	0%	0%	25%	4%	0%	25%	50%	11%	4%	50%	54%	14%	4%	54%	57%	21%	21%	57%	89%	7%	11%	89%
Voltage Rise for Residen	ncial Customers	50-100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	20%	3%	0%	26%	58%	13%	3%	58%	65%	23%	10%	65%	71%	23%	20%	71%	81%	13%	19%	81%
Overall Residential)	Voltage Drop Nor	>100 MVA	9%	0%	1%	0% 2%	0% 4%	0%	1%	0% 4%	0% 7%	0% 4%	0%	0% 7%	0%	0%	0% 4%	99%	0%	7%	0% 6%	12%	0%	9%	0%	18%	100%	0%	0%	100%
		All ZSS	0%	0%	0%	0%	33%	5%	0%	33%	70%	28%	13%	70%	82%	58%	35%	82%	87%	77%	63%	87%	95%	78%	78%	95%	100%	92%	80%	100%
Percentage of ZSS with I	Non-Compliant	≤0 MVA 50.100 MVA	0%	0%	0%	0%	29%	7%	0%	29%	50%	21%	11%	50%	68%	50%	32%	68%	75%	61%	42%	75%	89%	64%	64%	89%	100%	82%	68%	100%
		50-100 MVA >100 MVA	0%	0%	0%	0%	39%	3%	0%	39%	87% 100%	35%	16%	87% 100%	94%	69%	39%	94%	97%	90%	84%	97%	100%	90%	100%	100%	100%	100%	90%	100%
		A	0	0	0		0	0	0	۰	- 1	0	0	- 1	340	50	0	340	475	328	- 1	475	723	446	- 1	723	1268	603	92	1268
Total Overloaded MV Cor (km)	nductor Length	<0 MVA	0	0	0	۰	0	0	0	۰	- 1	0	0	1	125	8	0	125	175	55	1	175	253	150	- 1	253	419	181	33	419
		50-100 MVA >100 MVA	0	0	0	0	0	0	0	0	0.4	0	0	0.4	200	40	0	200	280	226	0	280	439	19	0	439	796 53	395 26	55	796 53
		All ZSS	60%	0%	60%	60%	87%	87%	60%	87%	87%	87%	60%	87%	100%	100%	60%	100%	100%	100%	60%	100%	100%	100%	60%	100%	100%	100%	87%	100%
Percentage of ZS Distribution Transformer U	SS with Utilisation > 150%	<50 MVA	79%	0%	79%	79%	89%	89%	79%	89%	89%	89%	79%	89%	100%	100%	79%	100%	100%	100%	79%	100%	100%	100%	79%	100%	100%	100%	89%	100%
		50-100 MVA >100 MVA	42% 100%	0%	42% 100%	42% 100%	84%	84%	42% 100%	84% 100%	84% 100%	84%	42%	84% 100%	100%	100%	42% 100%	100%	100%	100%	42%	100%	100%	100%	42% 100%	100%	100%	100%	84%	100%
		Alizss	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Percentage of ZS LV Circuits Usilisati	55 with ion > 150%	⊲0 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	30-100 >1001 ABZ	50-100 MVA >100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	9%
						0.3%				1.6%				2.6%	ament 6%				6%				7%				11%			11.1%
		- SO MVA	0.3%	0.1%	0.00%	03%	2%	1%	0%	1.5%	4%	2%	1%	3.5%	6%	2%	2%	5.8%	6%	3%	2%	6.0%	7% 6%	3%	3%	6.2%	10%	2%	3%	15.7%
Residential Voltage Rise N	AII 255	50-100 MVA	0.3%	0.1%	0.03%	0.3%	2%	1%	0%	1.7%	4%	2%	1%	3.7%	6%	2%	2%	5.9%	6%	3%	2%	6.5%	7%	3%	3%	7.0%	10%	2%	3%	9.7%
			0.1%	0.1%	0.00%	0.1% 2%	1%	3.11%	0%	1.0%	2.3%	1.0%	0.6%	2.3%	4%	1%	1%	3.6%	4% 13%	2%	1%	4.0%	4%	2%	2% 9%	45%	11%	1%	2%	11.1%
			1%	1%	0.5%	1%	422%	3.11%	127%	4%	7% 6%	3%	3%	7%	8%	5%	4%	8%	10%	7%	5%	10%	18%	9%	7%	18%	25%	10%	10%	25%
Residential Voltage Drop F	Non-Compliance	50-100 MVA	1%	2%	1%	2%	4.4%	3.3%	13%	4%	7%	5%	3%	7%	11%	6%	5%	11%	14%	8%	7%	14%	19%	10%	10%	19%	24%	11%	10%	24%
		>100 MVA	0.4%	1%	0.3%	1%	3%	2%	1%	3%	5%	3%	2%	5%	8%	4%	3%	8%	10%	5%	4%	10%	14%	7%	6%	14%	22%	8%	7%	22%
Percentage of LV Net		Ali ZSS	0.4%	0.5%	0.4%	0.4%	3%	2%	2%	3%	9%	4%	3%	9%	5%	4%	5%	5%	5%	3%	7% 4%	9%	11%	3%	7% 4%	11%	15%	4%	5%	15%
Voltage Rise is	INUEL	50-100 MVA	1%	0.5%	0.5%	1%	7%	4%	2%	7%	11%	5%	6%	11%	12%	5%	6%	12%	11%	7%	8%	11%	13%	6%	8%	13%	15%	5%	7%	15%
		>100 MVA All ZSS	1%	0.2%	1%	1%	7% 11%	3%	2%	7%	11%	13%	10%	11%	11%	4%	5%	11%	10%	17%	7%	10%	12%	5%	7%	12%	16%	4%	6%	16%
		- CO MVA	2%	4%	2%	4%	6%	6%	4%	6%	8%	7%	6%	8%	10%	9%	7%	10%	12%	11%	7%	12%	16%	11%	8%	16%	20%	13%	9%	20%
Voltage Drop Is	BRUGE	50-100 MVA	4%	8%	4%	8%	14%	13%	8%	14%	17%	16%	13%	17%	19%	19%	15%	19%	22%	21%	16%	22%	20%	22%	17%	26%	33%	23%	19%	33%
		>100 MVA All ZSS	4%	0.5%	4%	1%	13%	13%	1%	13%	9%	15%	12%	9%	17%	17%	14%	17%	21%	19%	15%	21%	23%	19%	10%	10%	13%	21%	17% 5%	13%
Percentage of LV Net	standa with	<0 MVA	0.4%	0.4%	0%	0.4%	3%	1%	1%	3%	5%	2%	3%	5%	5%	3%	2%	5%	5%	3%	3%	5%	6%	3%	4%	6%	11%	3%	3%	11%
Percentage of LV Net Both Voltage Rise&D	Drop Issues	50-100 MVA	1%	0.5%	0%	1%	7%	3%	1%	7%	11%	5%	6%	11%	12%	5%	5%	12%	11%	7%	7%	11%	12%	6%	8%	12%	14%	5%	7%	14%
		>100 MVA	1%	0.2%	0%	1%	7%	3%	1%	7%	11%	5%	5%	11% Thermal Asses	11%	4%	5%	11%	10%	6%	6%	10%	11%	5%	7%	11%	15%	4%	6%	15%
		Ali 255	99%	90%	99%	99%	90%	97%	98%	90%	90%	94%	97%	90%	80%	85%	95%	80%	77%	80%	91%	77%	72%	77%	84%	72%	69%	75%	82%	69%
	cs 100%	≤0 MVA 50-100 MVA	99%	98%	100%	99%	95%	90%	97%	95%	91%	94%	90%	91%	84% 79%	83%	93%	79%	80% 75%	84% 77%	92%	75%	76%	82% 75%	85%	76%	73% 67%	80% 73%	83%	73% 67%
		>100 MVA	99%	99%	99%	99%	95%	97%	98%	95%	84%	92%	97%	84%	70%	77%	94%	70%	65%	69%	88%	65%	60%	67%	78%	60%	57%	64%	74%	57%
		All 255	0.3%	1%	0.3%	1%	2%	1%	1%	2%	2%	2%	1%	2%	4%	3%	2%	4%	3%	4%	3%	3%	4%	4%	6%	4%	4%	4%	6%	4%
	100%-110%	<50 MVA 50-100 MVA	0.4%	0.3%	0.2%	03%	1%	2%	0.4%	1%	2%	2%	1%	2%	3%	3%	2%	5%	2%	4%	3%	2%	4%	4%	5% 7%	4%	4%	5% 4%	5% 7%	4%
Percentage of Distribution Transformers with Maximum Utilization		>100 MVA	0.3%	1%	0.4%	1%	2%	2%	1%	2%	4%	3%	1%	4%	6%	5%	3%	6%	4%	6%	4%	4%	4%	4%	10%	4%	4%	4%	9%	4%
Maximum Utilisation		All 255	1%	1%	0.3%	1%	2%	1%	1%	2%	6%	3%	1%	6%	12%	11%	3%	12%	12%	13%	5%	12%	10%	12%	8%	10%	10%	11%	10%	10%
	110%-150%	<50 MVA 50-100 MVA	1%	1%	1%	9.4%	1%	1%	1%	1%	5% 7%	3%	2%	5% 7%	13%	7% 12%	4% 2%	13%	13%	9%	5% 4%	9%	9%	9%	7%	10%	10%	11%	10%	10%
		>100 MVA	1%	0.5%	0.4%	0.5%	2%	1%	1%	2%	10%	4%	2%	10%	20%	16%	3%	20%	18%	20%	6%	18%	13%	17%	10%	13%	13%	15%	14%	13%
		AII ZSS	0.03%	0.0%	0.03%	9%	1%	0.3%	0.2%	1%	2%	0%	1%	2%	4%	1%	1%	4% 5%	9%	3%	1%	9%	14%	8%	2%	14%	17%	10%	3%	17%
	>110%	<00 MVA 50-100 MVA	0.1%	0%	0.1%	0%	0.4%	0.4%	0.1%	0.4%	3%	1%	1%	1%	5%	1%	1%	3%	9%	3%	2%	9%	11%	5% 9%	3%	15%	13%	12%	4% 2%	13%
		>100 MVA	0.04%	0.0%	0.04%	0%	1%	0.2%	0.2%	1%	2%	0%	1%	2%	5%	1%	1%	5%	14%	5%	2%	14%	22%	13%	2%	22%	20%	17%	3%	26%
Percentage of	f PV Customers C	urtsiled	1%	100%	85%	100%	72%	100%	73%	100%	62%	100%	64%	100%	67%	100%	70%	100%	77%	100%	77%	100%	82%	100%	82%	100%	84%	100%	85%	100%
Aggregate Export	Total PV Cu		0	- 1	۰	141	0.05	1	1	235	0.5	2	- 1	437	1.4	3	2	864	2	4	3	1157	3	5	4	1511	3	5	5	1807
		of PV Curtailment	0%	7%	7%	6%	0.9%	10%	8%	8%	8%	16%	13%	12% EVManager	19%	25%	22%	22%	24%	28%	26%	26%	27%	30%	30%	30%	29%	31%	33%	32%
	age of EVs Affects										9%	9%	8% 3.2	9%	12%	12%	11%	12%	10%	10%	15%	10%	20%	20%	19%	20%	24%	24%	23% 4.7	24%
Arterage E	· · · · · · · · · · · · · · · · · · ·							_							-		-					-							~	-

Appendix 10: Full Whole-State Extrapolation Table (With DOEs) – United Energy

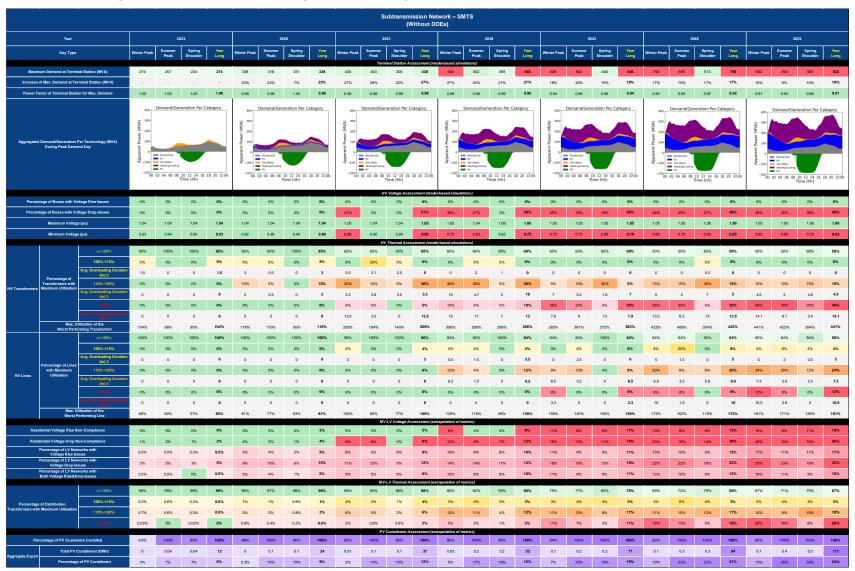
													United E	nergy (47) (with DC	ZSS out ()Es)	of 47)														
Year			2023				2028				2033				2038				2943				2045				2053			
Day Type		Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	Winter Peak	Summer Peak	Sping	Year Long	Winter Peak	Summer Peak	Sping Shoulder	Year Long	
														Overvies																
Overall Residential Voltage I	Voltage Rise No	-Compliance All ZSS	0.1%	0.02%	0.05%	0.1%	1%	0%	0.2%	1%	2%	1%	0%	2%	3%	1%	1%	3%	4%	1%	1%	4% 2%	17%	1%	1%	17%	15%	1%	1%	4%
Percentage of ZSS with Non-Compli Voltage Rise for Residencial Custom	Non-Compliant	-SO MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	ncial Customers	50-100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	7%	0%	0%	7%	14%	0%	0%	14%	21%	0%	0%	21%	25%	0%	0%	25%
Overall Residential (National Page No.	>100 MVA	1%	1%	0%	9%	0%	3%	1%	0% 3%	7%	5%	0% 2%	7%	11%	5%	0%	11%	15%	7%	0% 6%	15%	13%	9%	9%	13%	24%	10%	10%	24%
Oreian Academia Hotage Off	Totalge Littly No.	Alizss	0%	0%	0.3%	0%	2%	0%	0%	2%	100%	34%	0%	100%	100%	23%	2%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Percentage of ZSS with 1	Non-Compliant	<50 MVA	0%	0%	0%	0%	0%	0%	0%	0%	100%	67%	0%	100%	100%	67%	0%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
'oltage Drop for Residential Custor	ntial Customers	50-100 MVA >100 MVA	0%	0%	0%	0%	4%	0%	0%	4%	100%	32%	0%	100%	100%	25%	4%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
		>100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0.1	31%	0%	9.1	120	13%	0%	120	100%	148	0	100%	272	172	100%	272	100%	100%	33	100%
Total Overloaded MV Cor	nductor Length	<50 MVA	٥	0	۰		0	0	0		0	0	0	۰	2	- 1	0	2	3	3	0	3	5	3	0			5	- 1	
(km)		50-100 MVA	٥	0	۰	0	0	0	0	۰	0.1	0	0	0.1	83	17	0	83	116	97	0	116	185	117	0	186	318	170	23	318
		>100 MVA All ZSS	15%	0	15%	15%	19%	19%	15%	19%	19%	19%	15%	19%	34	100%	15%	34	100%	100%	15%	45 100%	100%	100%	15%	100%	100%	100%	10	141
Percentage of ZSS with	TE with	<50 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	100%	100%	100%	0%	100%	100%	100%	0%	100%	100%	100%	0%	100%
Distribution Transformer U	Utilization > 150%	50-100 MVA	25%	0%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	100%	100%	25%	100%	100%	100%	25%	100%	100%	100%	25%	100%	100%	100%	25%	100%
		>100 MVA All ZSS	0%	0%	0%	0%	13%	13%	0%	13%	13%	13%	0%	13%	100%	100%	0%	100%	100%	100%	0%	100%	100%	100%	0%	100%	100%	100%	13%	100%
		Ali ZSS ⊲O MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% 0%
Percentage of 255 with LV Circuits Utilization > 15	55 with ion > 150%	50-100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		>100 MVA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Residential Voltage Rise Non-Corr		Alizas	0.1%	0.02%	0.05%	0.1%	1%	0%	0.2%	1%	2%	1%	0%	2%	3%	1%	1%	3%	4%	1%	1%	4%	5%	1%	1%	5%	4%	1%	1%	4%
	Non-Compilance	-SO HVA	0.04%	0%	0.1%	0.1%	1%	0%	0.2%	1%	2%	0%	0%	2%	3%	0%	1%	3%	4%	1%	1%	4%	5%	1%	1%	5%	3%	1%	1%	3%
		50-100 MVA >100 MVA	0.1%	0.03%	0.05%	0.1%	1%	0%	0.2%	1%	2%	1%	1%	2%	3.14%	1%	1%	3.14%	4%	1%	1%	4%	5%	1%	1%	5%	5%	1%	1%	3%
		Alizas	1%	1%	0.3%	1%	3%	3%	1%	3%	7%	5%	2%	7%	11%	5%	3%	11%	15%	7%	6%	15%	20%	9%	9%	20%	24%	10%	10%	24%
Residential Voltage Drop Non-Complian	Non-Compliance	<50 MVA	1%	1%	0.3%	1%	3%	3%	1%	3%	8%	5%	2%	8%	13%	5%	3%	13%	10%	7%	7%	10%	22%	10%	10%	22%	26%	11%	11%	26%
		50-100 MVA >100 MVA	1%	1%	0.3%	1%	3%	3%	1%	3%	7% 7%	5%	2%	7%	11%	5%	3%	11%	14%	7%	6%	14%	19%	9%	9%	19%	24%	10%	10%	24%
			1%	0.2%	0.3%	1%	11%	5%	1%	11%	17%	5%	2%	7% 17%	12%	5%	3%	12%	15%	7% 9%	11%	15%	18%	8%	12%	18%	24%	10%	9%	24%
Percentage of LV Net	tworks with	Ali ZSS	1%	0%	1%	1%	14%	7%	5%	14%	23%	11%	12%	23%	24%	7%	11%	24%	22%	12%	14%	22%	25%	11%	10%	25%	24%	8%	12%	24%
Voltage Rise Is	nauen	50-100 MVA	1%	0.2%	1%	1%	10%	5%	3%	10%	15%	7%	8%	15%	10%	5%	7%	16%	14%	8%	10%	14%	17%	7%	10%	17%	19%	6%	8%	19%
		>100 MVA	1% 6%	12%	1%	1%	13%	7%	4%	13%	21%	10%	11%	21%	22%	7% 27%	10%	22%	20%	11%	13%	20%	22%	10%	14%	22%	39%	30%	11%	22%
Percentage of LV Net	standa with	<50 MVA	8%	17%	8%	17%	29%	28%	17%	29%	35%	33%	20%	35%	35%	30%	30%	36%	40%	38%	32%	40%	41%	37%	35%	41%	46%	39%	35%	46%
Voltage Drop Is	ERDER	50-100 MVA	6%	11%	5%	11%	19%	18%	11%	19%	23%	22%	17%	23%	24%	24%	20%	24%	28%	26%	21%	20%	30%	26%	23%	30%	37%	28%	24%	37%
		>100 MVA All ZSS	8% 1%	15%	8%	15%	20%	25%	15%	20%	31%	30%	24%	31% 17%	32%	33%	27%	33% 17%	10%	35%	29%	37% 10%	10%	34%	31%	18%	43% 19%	30%	32%	43% 19%
		- CONTVA	1%	0.2%	0%	1%	14%	7%	2%	14%	17%	11%	11%	23%	17%	7%	10%	24%	22%	9%	12%	22%	24%	11%	12%	24%	19%	8%	9%	24%
Percentage of LV Networks Both Voltage Rise&Drop Iss	Drop Issues	50-100 MVA	1%	0.2%	0%	1%	9%	5%	2%	9%	15%	7%	7%	15%	10%	5%	6%	16%	14%	8%	8%	14%	16%	7%	10%	16%	18%	6%	8%	10%
		>100 MVA	1%	0.03%	0%	1%	13%	7%	2%	13%	21%	10%	10%	21%	22%	7%	9%	22%	20%	11%	11%	20%	22%	10%	14%	22%	22%	8%	11%	22%
Percentage of Continuous Transference of the Managem Ulfrantion	ca 100%	Alizas	100%	100%	100%	100%	98%	98%	99%	90%	83%	92%	99%	83%	64%	72%	95%	64%	59%	63%	89%	50%	55%	60%	76%	55%	51%	58%	72%	51%
		≪0 MVA	100%	100%	100%	100%	90%	99%	100%	90%	79%	91%	100%	79%	55%	65%	90%	55%	49%	53%	89%	49%	46%	50%	72%	46%	41%	47%	68%	41%
		50-100 MVA >100 MVA	99%	102%	100%	99%	90%	98%	100%	96%	84% 79%	92%	100%	84% 79%	67% 55%	75%	95%	67% 55%	50%	66% 54%	90%	50%	50% 46%	51%	78%	59% 46%	55%	61%	74%	55% 42%
		Alizes	0.1%	0.3%	0.1%	0.3%	3%	1%	0.3%	3%	4%	4%	0.4%	4%	8%	6%	2%	8%	4%	6%	5%	4%	4%	3%	12%	4%	4%	3%	11%	4%
	100%-110%	<50 MVA	0%	0%	0%	0%	4%	1%	0%	4%	5%	5%	0%	5%	10%	7%	3%	10%	5%	7%	5%	5%	5%	3%	15%	5%	5%	3%	13%	5%
		50-100 MVA	0.2%	0.4%	0.2%	0.4%	3%	1%	0.4%	3%	4%	4%	1%	4%	7%	5%	2%	7%	4%	6%	4%	4%	4%	3%	11%	4%	4%	4%	10%	4.5%
		>100 MVA	0%	0%	0%	0%	4%	1%	0%	4%	12%	4%	0.01%	12%	24%	7% 21%	2%	9%	22%	7% 25%	5%	22%	4.6%	21%	14.9%	14%	13%	17%	13%	4%
	110%-150% > 150%	-SOMVA	0%	0%	0%	0%	0%	0%	0%	0%	10%	4%	0%	10%	31%	27%	1%	31%	28%	31%	5%	20%	17%	26%	13%	17%	15%	21%	19%	15%
		50-100 MVA	0.4%	0.3%	0.2%	0.3%	1%	1%	0%	1%	11%	4%	1%	11%	21%	19%	2%	21%	20%	22%	5%	20%	14%	19%	10%	14%	13%	10%	15%	13%
		>100 MVA All ZSS	0.01%	0.01%	0%	0.01%	0%	0%	0%	0% 0.2%	15%	4%	0.00%	15%	31%	27%	1%	31%	27% 15%	31% 7%	5%	27% 15%	17%	20%	13%	17%	15%	21%	19%	15%
		-SOMVA	0.01%	0%	0.01%	0%	0.2%	0.1%	0.1%	0.2%	0%	0.2%	0.2%	0%	4%	1%	0%	4%	19%	7% 8%	0%	19%	33%	21%	0%	33%	31%	22%	0%	39%
		50-100 MVA	0.02%	0.0%	0.02%	0%	0.3%	0.2%	0.1%	0.3%	1%	0.3%	0.3%	1%	4%	1%	1%	4%	14%	6%	1%	14%	24%	14%	1%	24%	28%	19%	2%	28%
		>100 MVA	0%	0%	0%	0%	0.01%	0.01%	0%	0.01%	0.03%	0.01%	0%	0.03% PV Cortolic	4%	1%	0.00%	4%	18%	8%	0.00%	18%	32%	21%	0%	32%	39%	28%	0%	39%
Percentage of PV Customers Curtailed			0.3%	100%	85%	100%	73%	100%	74%	100%	62%	100%	68%	100%	72%	100%	82%	100%	82%	100%	87%	100%	87%	100%	91%	100%	89%	100%	94%	100%
Total PV Curt			0	1	0	162	0.07	- 1	1	278	0.6	2	- 1	529	2	4	3	1027	2	5	4	1419	3	6	5	1915	4	7	6	2279
		of PV Curtailment	0%	7%	7%	6%	1.1%	10%	8%	8%	8%	17%	13%	13% EV Manager	18%	27%	23%	23%	25%	31%	28%	28%	28%	33%	33%	33%	30%	34%	30%	35%
	Percentage of EVs Affected										9%	9%	8%	9%	13%	13%	12%	13%	16%	10%	15%	16%	21%	20%	20%	21%	24%	24%	23%	24%
Average EV Charging Delay (h)									-	37	2.9	3.4	3.7	5.0	4.4	52	5.2	47	4.7	5.5	5.5	4.5	4.8	5.5	5.5	4.4	4.5	5.4	5.4	



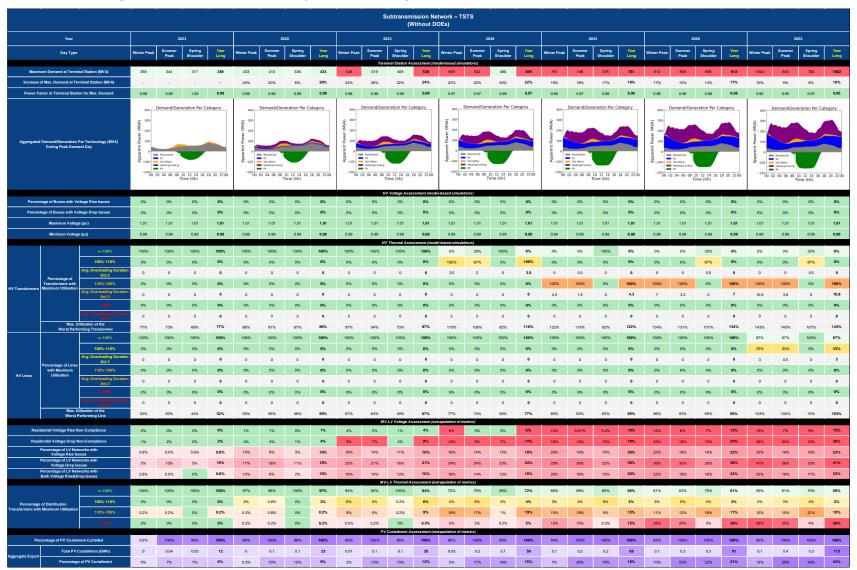
Appendix 11: Full Impact Assessment Table (Without DOE) - CBTS



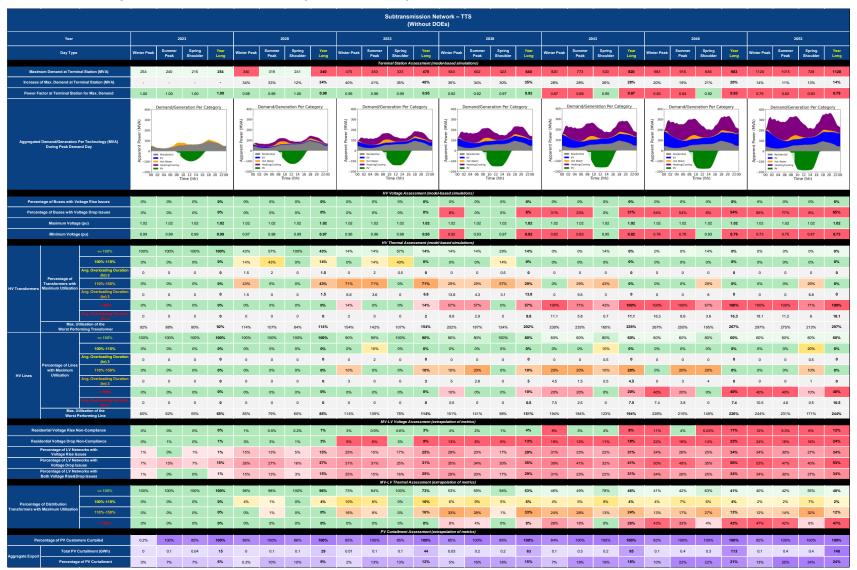
Appendix 12: Full Impact Assessment Table (Without DOE) - ERTS



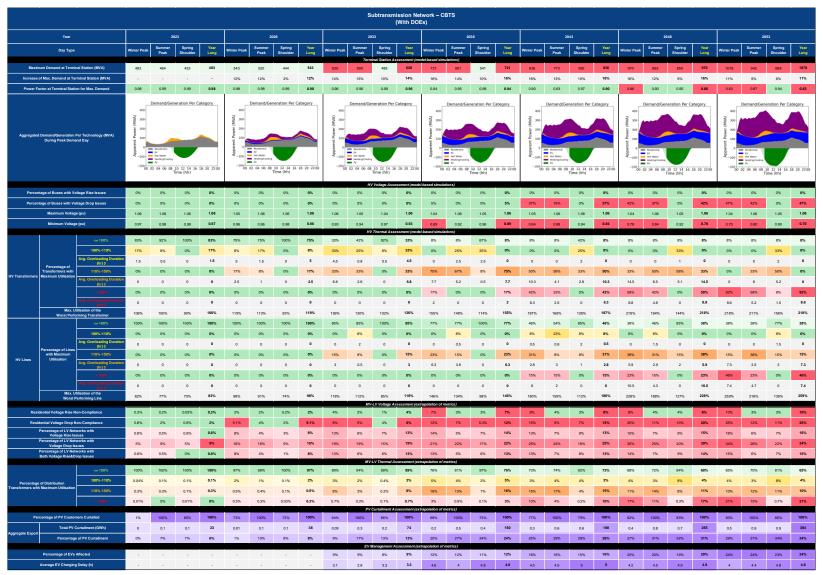
Appendix 13: Full Impact Assessment Table (Without DOE) - GNTS-MBTS



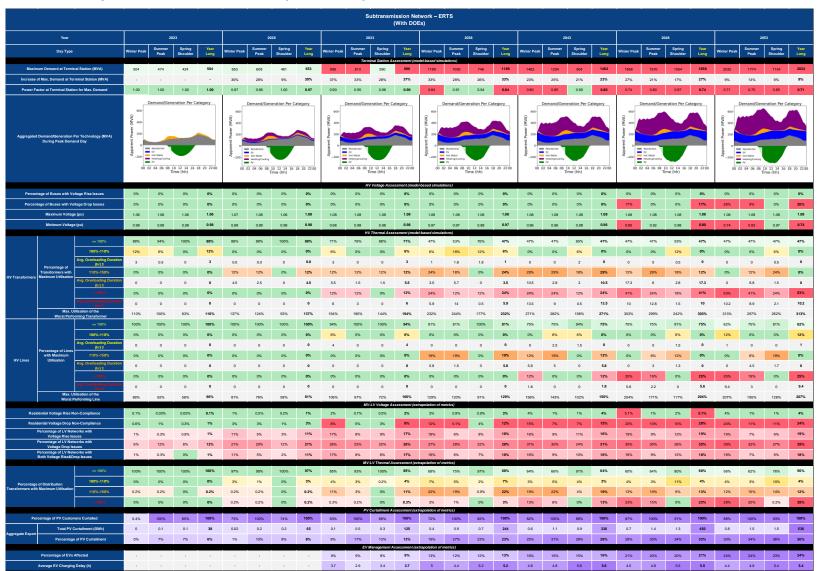
Appendix 14: Full Impact Assessment Table (Without DOE) - SMTS



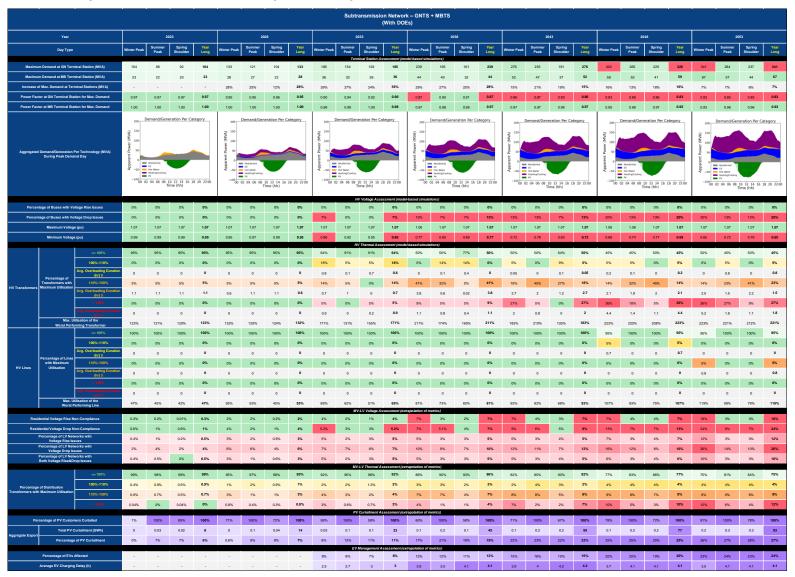
Appendix 15: Full Impact Assessment Table (Without DOE) - TSTS



Appendix 16: Full Impact Assessment Table (Without DOE) – TTS



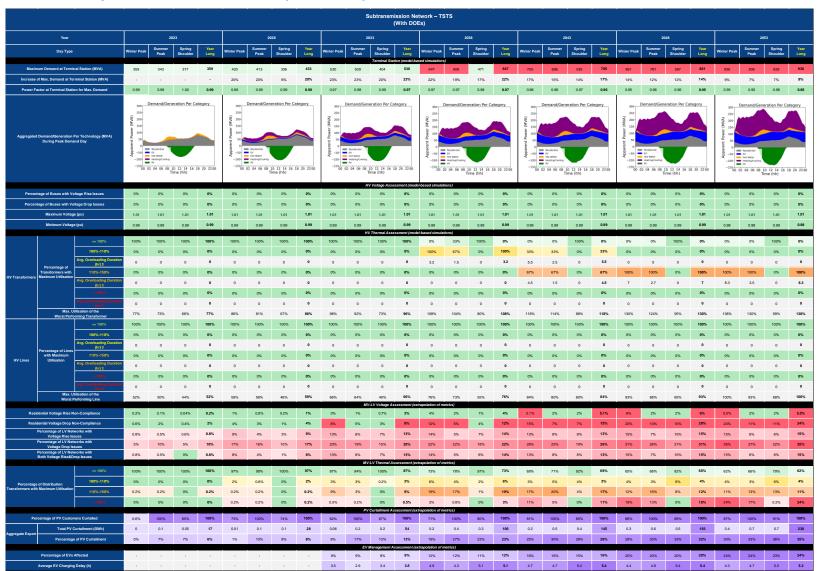
Appendix 17: Full Impact Assessment Table (With DOE) - CBTS



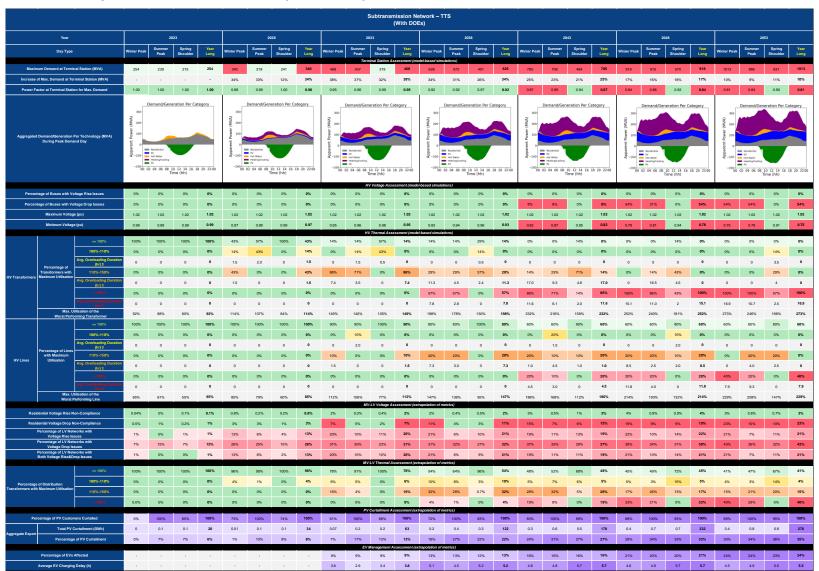
Appendix 18: Full Impact Assessment Table (With DOE) - ERTS



Appendix 19: Full Impact Assessment Table (With DOE) - GNTS-MBTS



Appendix 20: Full Impact Assessment Table (With DOE) - SMTS



Appendix 21: Full Impact Assessment Table (With DOE) – TSTS

Appendix 22: Full Impact Assessment Table (With DOE) - TTS

